Gasbeschaffenheitsmessgerät EMC 500/500-L

BEDIENUNGSANLEITUNG

Serving the Gas Industry Worldwide

STAND FEBRUAR 2008

Hinweis:

Papier aktualisiert sich leider nicht automatisch, die technische Entwicklung schreitet aber ständig voran. Somit sind technische Änderungen gegenüber Darstellungen und Angaben dieser Bedienungsanleitungen vorbehalten. Die aktuellste Version dieses Handbuchs (und die weiterer Geräte) können Sie aber bequem von unserer Internet-Seite **www.rmg.com** herunterladen.

RMG Messtechnik GmbH Otto-Hahn-Straße 5 35510 Butzbach Fax: 06033 / 897-130 E-mail: Messtechnik@Honeywell.com

Telefonnummern: Zentrale: 06033 / 897-0 Kundendienst: 06033 / 897-127 Ersatzteile: 06033 / 897-173

Manual EMC 500 · DE01 · 2008-02

EINFÜHRUNG1
Funktionsprinzip2
Blockschaltbild
Aufbau Ex-Ausführung
Aufbau Non Ex-Ausführung
Mess- und Elektronikeinneit
Gesamtanordnung
Anordnung mit Analysenrechner GC 9000 7
BETRIEBSVORSCHRIFTEN FÜR DIE EXPLOSIONSGESCHÜTZTE AUSFÜHRUNG8
Allgemeine Hinweise
Druckfestes Gehäuse8
Anschlussgehäuse in erhöhter Sicherheit8
Wartung9
Sicherheitsmaßnahmen9
Wartungsarbeiten9
Instandsetzung9
INBETRIEBNAHME
Standort des EMC 50010
Mechanischer Anschluss10
Elektrische Anschlüsse11
Anschlussdose Messwerk 11
Klemmenbelegung für Ausführung mit analoger Übertragung 11
Anschlussplan Messwerk (digitale Ubertragung)
Warmlaufphase
Erste Kalibrierung
BETRIEB
Automatische Nachkalibrierung14
Manuelle Kalibrierung14
Ablauf einer Kalibrierung15
Prüfgasanalyse15
Wartung15
ANALYSENRECHNER GC 900016
Frontplatte GC 900018

INHALT

De		10
ве	alenung GC 9000	.19
1	Beschreibung der Funktionstasten	. 19
	Sonderlästen	. 20
	Fullktion Fehler anzeigen / Fehler loschen	. Z I 21
	Fehler löschen	21
	Bedienungsbeispiele	. 21
	Anzeigen von Messwerten, Konstanten und Betriebsarten	21
	Freigabe der Programmierung Programmierung einer neuen Konstanten	22
	Allgemeines zur Eingabe neuer Werte:	23
	Programmierung eines neuen Modus	24
	Programmierung Stromausgänge	24
Кс	oordinatensystem GC 9000	.25
I	Übersicht über die Matrix	. 25
	Aufbau einer Spalte	. 26
Re	schreibung der einzelnen Snalten	27
	FMC-Kalibrierung	27
	EMO Kansholung	28
	EMO Ronstanten FMC-Modus	29
	EMG-Archive	. 30
	Stromausgang 1	. 31
	Stromausgang 2	. 32
;	Stromausgang 3	. 33
;	Stromausgang 4	. 34
;	Serielle Schnittstellen	. 35
	Auswahl Berechnung	. 36
	Messwerte	. 37
l	DSfG Füllstandsregister	. 39
	Druckersteuerung	. 41
l	Datum	. 42
I	Uhrzeit	. 42
l	Fehler	. 43
	DSfG	. 44
	EMC-Sensor 1	. 47
l	EMC-Sensor 2	. 48
l	EMC-Druck	. 49
l	EMC-Gehäusetemperatur	. 50
	EMC-Blocktemperatur	. 51
'	Versionsparameter	. 52
Α	Blockschaltbild GC 9000	.53
В	Technische Daten	.54
С	Anschlussplan GC 9000	.56
D	Fehlerliste	.57
Е	Montageanleitung für Rohrverschraubungen	.60

Einführung

Der Messwertgeber EMC 500 / 500-L ermittelt **kontinuierlich** neben dem **Brennwert** auch **Heizwert, Wobbeindex und Normdichte** von Brenngasen.

Der Wobbeindex ist eine Messgröße zur Überwachung und Regelung der Wärmeleistung von Gasbrennern und ist wie folgt definiert:

$$W = \frac{H}{\sqrt{d_v}} \qquad d_v = \frac{\rho_n}{\rho_{n,Luft}}$$

mit:

- W Wobbeindex (W_i, W_s)
- H Brennwert (Hi, Hs)
- dv Dichteverhältnis
- ρ_n Normdichte des Messgases
- $\rho_{\text{n,Luft}}$ Normdichte der Luft

Die Wärmeleistung eines Gasbrenners lässt sich konstant halten, wenn die Gaszufuhr so geregelt wird, dass der Wobbeindex konstant bleibt.

Brennwert, Heizwert und Normdichte sind wärmetechnische Größen, die zur Überwachung von Gaszusammensetzung und Energieinhalt von Brenngasen dienen.

Der Messwertgeber EMC 500 ist geeignet für Abrechnungsmessungen von Brennwert, Normdichte und CO₂-Gehalt in natürlichen Erdgasen und deren Mischungen nach G 260, 2. Gasfamilie. Die Ausführung EMC 500-L ist auch geeignet für Erdgase, die mit bis zu 20% Luft konditioniert wurden und misst eichamtlich Brennwert und CO₂-Gehalt. Die ebenfalls gemessene Normdichte kann nach einer Sonderprüfung zur Berechnung der Kompressibilitätszahl verwendet werden.

Der Messwertgeber EMC 500 / 500-L bestimmt im Gegensatz zu den herkömmlichen Methoden die Messwerte ohne Verbrennung des Messgases.

Die verbrennungslose Messung bringt markante Vorteile mit sich,wie z.B:

- geringer Wartungsaufwand
 ⇔ keine Reinigung des Brenners
 ⇔ keine Wartung der Luftzufuhr
- keine Verbrennungsluftversorgung notwendig, dadurch kein Einfluss der Umgebungsluft auf den Messwert
- keine ungewünschte Wärmeentwicklung am Aufstellungsort

Der EMC 500 / 500-L erfasst Messwertänderungen in kürzester Zeit. Somit ist auch die automatische Nachkalibrierung innerhalb weniger Minuten abgeschlossen. Außerdem erfolgt eine min/max-Überwachung der Messwerte sowie eine Temperaturüberwachung des Sensors.

Funktionsprinzip

Kernstück des EMC 500 Messwertgebers sind zwei thermische, gasartenabhängige Sensoren, mit denen die Wärmekapazität, die Wärmeleitfähigkeit und die Viskosität des Gases gemessen werden. Da diese Größen in einem weiten Bereich eine Funktion des Brennwertes darstellen, ist es möglich, aus diesen Messwerten den Brennwert und den Heizwert zu berechnen.

Weiterhin wird der Druckabfall über einen Strömungswiderstand gemessen. Da der Druckabfall bei gleichbleibender Gastemperatur eine Funktion der Gasdichte ist, lässt sich damit die Normdichte des Gases bestimmen. Aus Brennwert und Normdichte wird dann der Wobbeindex berechnet.

Mit einem Infrarot-Sensor wird der CO₂-Anteil gemessen, der neben Brennwert und Normdichte für die Berechnung der Kompressibilitätszahl nach GERG 88-S benötigt wird.

Blockschaltbild

Aufbau Ex-Ausführung

Aufbau Non Ex-Ausführung

Mess- und Elektronikeinheit

- 1. Sensorblock beheizt und isoliert
- 2. Druckminderer (Stufe 1)
- Druckaufnehmer Typ
 Infrarot-Sensor (CO₂)
- 5. Magnetventilblock mit 3/2-Wege-Magnetventil
- 6. Leitungsfilter Typ SS-2F-2
- 7. Montageplatte
- 8. Netztrafo
- (nur aktiv bei 230 V Ausführung)
- 9. Meßelektronik-Platine

Sensorblock

6

Gesamtanordnung

Das komplette System besteht aus dem Messwerk und dem Analysenrechner GC 9000 (zur Steuerung und Auswertung der Analyse). Der Analysenrechner beinhaltet folgende Funktionen:

- Eichfähige Bestimmung von Brennwert, Normdichte und CO₂-Anteil.
- Nicht eichfähige Bestimmung von Wobbezahl, Heizwert und Dichteverhältnis sowie Überwachung des Stickstoffanteils.
- Bus-Schnittstelle (DSfG oder Modbus ASCII)
- Bedienung wie beim Prozessgaschromatographen.

Anordnung mit Analysenrechner GC 9000

Betriebsvorschriften für die explosionsgeschützte Ausführung

Allgemeine Hinweise

8

Das Messgerät für Brennwert und Normdichte EMC 500 in der Ex-Ausführung ist ein explosionsgeschütztes elektrisches Betriebsmittel der Zündschutzart "Druckfeste Kapselung" mit Anschlussgehäuse der Zündschutzart "Erhöhte Sicherheit".

Kennzeichnung II 2G EEx de IIB T4

Das Gerät entspricht den Bestimmungen der Richtlinie 94/9/EG (ATEX 100a). Es kann in explosionsgefährdeten Bereichen in Zone 1, die durch Gase und Dämpfe, die der Explosionsgruppe IIB und der Temperaturklasse T4 zugeordnet sind, gefährdet sind, installiert werden.

Bei der Installation und dem Betrieb sind grundsätzlich die zutreffenden Verordnungen und Bestimmungen zu beachten.

Das Gerät ist, bezogen auf den Explosionsschutz, für einen Umgebungstemperaturbereich von -20 bis +60°C zugelassen. Für die eichamtliche Messung muss die Umgebungstemperatur jedoch zwischen -20 und +55°C liegen!

Das Gerät ist vor direktem Witterungseinfluss zu schützen.

Druckfestes Gehäuse

Das druckfeste Gehäuse hat keinen Verriegelungsschalter.

Es ist darauf zu achten, dass vor dem Öffnen des Gehäuses die Spannung abgeschaltet ist und danach die Wartezeit von 1 Minute eingehalten wird.

(Siehe Hinweis auf dem Typenschild)

Anschlussgehäuse in erhöhter Sicherheit

Beim elektrischen Anschluss des Gerätes ist auf die richtige Spannungsversorgung zu achten (siehe Angaben auf dem Typenschild).

Der Kabeldurchmesser der Zuleitungen muss innerhalb des Klemmbereichs der Kabeleinführung liegen.

Nicht benutzte Öffnungen für Leitungseinführungen sind durch schlagfeste, gegen Selbstlockern und Verdrehen gesicherte Verschluss-Stopfen zu verschließen.

Beim Schließen ist zu beachten, dass die Dichtungen wirksam bleiben um die Schutzart IP 54 zu gewährleisten.

Manual EMC 500 · DE01 · 2008-02

Wartung

Explosionsgeschützte elektrische Steuerungen sind einer regelmäßigen Wartung zu unterziehen. Die Zeitintervalle dieser Prüfung hängen von den Betriebs-und Umweltbedingungen ab. Wir empfehlen mindestens eine Überprüfung pro Jahr (evtl. in Verbindung mit der jährlichen eichtechnischen Überprüfung des EMC 500).

Sicherheitsmaßnahmen

Arbeiten an unter Spannung stehenden elektrischen Betriebsmitteln sind in explosionsgefährdeten Bereichen grundsätzlich verboten (außer bei eigensicheren Stromkreisen).

In Sonderfällen können auch Arbeiten durchgeführt werden, wenn sichergestellt ist, dass keine explosionfähige Atmosphäre vorhanden ist.

Dies darf nur mit explosionsgeschützten, zugelassenen Messgeräten geschehen.

Wartungsarbeiten

Da druckfeste Gehäuse durch den zünddurchschlagsicheren Spalt nur bedingt wassergeschützt sind (IP54), ist auf Wasseransammlung im Gehäuse zu achten.

Angerostete Spalte dürfen nicht durch Schleifmittel oder Drahtbürsten gereinigt werden, sondern nur auf chemischem Weg, z.B. mit reduzierenden Ölen.

Anschließend sind Spalte wieder sorgfältig mit säurefreien Korrosionsschutzmitteln, z.B. ESSO RUST BAN 397, Mobil Oil Tecrex 39 oder gleichwertigen zu schützen.

Die Dichtung beim Ex-e-Gehäuse ist auf Beschädigungen zu überprüfen und gegebenenfalls auszutauschen.

Kabelverschraubungen und Verschlußstopfen auf festen Sitz prüfen.

Beschädigungen an den Gehäusen können den Ex-Schutz aufheben!

Instandsetzung

Wird das Gerät hinsichtlich eines Teiles, von dem der Ex-Schutz abhängt, instandgesetzt, so darf es erst wieder in Betrieb genommen werden, nachdem es von einem anerkannten Sachverständigen überprüft wurde.

Werden Instandsetzungen vom Hersteller durchgeführt, ist keine Abnahme durch einen Sachverständigen erforderlich.

Inbetriebnahme

Standort des EMC 500

Die Non-Ex Ausführung des Messwertgebers EMC 500 darf nicht in explosionsgefährdeten Bereichen aufgestellt werden!

Der EMC 500 ist geeignet für den Einsatz in Aufstellungsräumen, die der PTB-A 7.62 entsprechen. Abweichend hiervon darf die Raumtemperatur im Aufstellungsraum des Messwerks WOM 02 zwischen -20°C und +55°C liegen.

Mechanischer Anschluss

Der EMC 500 verfügt über 3 Gaseingänge (Messgas, Kalibriergas und Prüfgas) und einen Gasausgang.

Zusätzlich ist noch ein Bypass installiert, der bei langen Zuleitungen und hohen Drücken zugeschaltet werden kann, um die Reaktionszeit zu verkürzen. Der Durchfluss durch den Bypass wird mit dem Regulierventil (3) eingestellt.

Die beiden Eingänge sind in Swagelok 1/8" ausgeführt und können mit Drücken von min.
 500 mbar und max. 3,0 bar beaufschlagt werden.

Die Gasausgänge sind in Swagelok 6 mm ausgeführt.
 Die Abblaseleitung sollte direkt ins Freie oder in eine Sammelleitung geführt werden. Dabei ist darauf zu achten, dass kein Rückdruck aus einer Sammelleitung ansteht.
 Bei längeren Abblaseleitungen sollte man den Ausgang des EMC 500 auf 12 mm aufweiten.
 Die Bypass-Abblaseleitung darf bei kleinen Rohrdurchmessern nicht zusammen mit der Abgasleitung weggeführt werden, da sonst bei hohem Durchfluss der Bypassleitung ein Rückdruck in der Abgasleitung entstehen kann.

Beachten Sie die Montageanleitung für Swagelok-Verbindungen im Anhang. Insbesondere dürfen diese Verbindungen nicht nachgezogen werden, da sie sonst undicht werden.

Elektrische Anschlüsse

Anschlussdose Messwerk

Klemmenbelegung für Ausführung mit analoger Übertragung

Messwerk Klemme	Analysenrechner Stecker / Klemme	Signal
1	L	230 / 115 V AC
2	N	230 / 115 V AC
3	L	+24 V DC
4	N	-24 V DC
5		ТА
6	RS 422	ТВ
7	Schnittstelle	DA
8		DB
9		+ I Aus (Option)
10		- I Aus (Option)
11	RS 232	TxD
12	Schnittstelle	RxD

Regional Achten Sie darauf, ob das Gerät eine Versorgungsspannung von 230 V oder 24 V benötigt!

IP Zur Spannungsversorgung sind geschirmte Netzkabel zu verwenden!

INBETRIEBNAHME

Anschlussplan Messwerk (digitale Übertragung)

Manual EMC 500 · DE01 · 2008-02

Warmlaufphase

Um sichere Messwerte zu erhalten, muss der Messwertgeber, wie jedes andere Messgerät, "warmlaufen".

Das hat im wesentlichen folgende Gründe:

- Der Sensorblock des EMC 500, wo die Sensoren und die Druckregler untergebracht sind, wird auf eine konstante Temperatur von ca. +65°C beheizt. Um den Innenraum aufzuheizen benötigt man diese Warmlaufphase.
- Druckregler und Drucksensor benötigen diese Zeit, um sich zu stabilisieren.

Bei der Erstinbetriebnahme oder nach längerem Trennen des Gerätes vom Messgas oder von der Versorgungsspannung muss eine Warmlaufphase von ca. 30 Minuten eingehalten werden. Während dieser Zeit sollte das Messgas aufgeschaltet sein, damit sich die Druckregler und der Drucksensor stabilisieren.

Die Warmlaufphase wird vom Gerät selbst überwacht. Während dieser Zeit werden in der Anzeige alternierend der Text "Startbetrieb", die Solltemperatur und die aktuelle Sensorblock-Temperatur angezeigt.

Ist die Solltemperatur erreicht, dann startet, falls dies in Feld D 2 so eingestellt wurde, automatisch eine Kalibrierung.

Erst nach erfolgreicher Kalibrierung wird der Messbetrieb gestartet.

Erste Kalibrierung

Zuerst muss ein Kalibriergas angeschlossen werden. Überprüfen Sie, ob die im Analysenrechner programmierten Sollwerte des Kalibriergases (Werte für Brennwert, Heizwert, Wobbeindex und Normdichte) mit dem Zertifikat des Kalibriergases übereinstimmen. Notfalls sind sie über die Tastatur einzugeben.

Hat der EMC 500 nach dem Warmlaufen seine Temperatur erreicht und haben sich die Druckregler und der Drucksensor stabilisiert, wird automatisch eine Kalibrierung durchgeführt. Eine weitere Kalibrierung erfolgt nach ca. 3 h.

Mit der Taste "GC-Status" kann man die entsprechende Spalte anwählen. Mit der Taste " \downarrow " blättert man zu den Feldern für die Sollwerteingabe (A 13, A 16, A 19, A 22 und A 25). Eine genauere Beschreibung finden Sie im Abschnitt "Analysenrechner".

Sind die Sollwerte eingegeben, dann kann man in Feld A2 durch Drücken der Taste "*" bei geöffnetem Eingabeschalter eine Kalibrierung starten.

Betrieb

Automatische Nachkalibrierung

Mit der automatischen Nachkalibrierung kann der EMC 500 über Tastendruck oder in wählbaren Abständen über die interne Uhr kalibriert werden.

Für eichfähige Messungen darf das Kalibrierintervall 4 Wochen nicht überschreiten.

Folgende	Einstellungen	sind für	die automatische	Nachkalibrierung	relevant:

Spalte	Zeilen	
А	13, 16, 19, 22, 25	Sollwerte des Kalibriergases
D	21	Einstellung auf "Automatik"
D	22	Wochentag der ersten Kalibrierung
D	23	Uhrzeit der Auto-Kalibrierung
D	24	Auswahl der Intervallbasis
D	25	Wiederholrate zur Intervallbasis

Beispiel:	D 22	\rightarrow	Montag
	D 23	\rightarrow	06:00:00
	D 24	\rightarrow	Tag(e)
	D 25	\rightarrow	10

In diesem Fall erfolgt die automatische Nachkalibrierung alle 10 Tage um 6 Uhr, beginnend am nächsten Montag.

Während der automatischen Nachkalibrierung werden die Messwerte Brennwert, Normdichte, CO₂-Gehalt, Wobbezahl, Heizwert und Dichteverhältnis auf dem letzten Messwert vor dem Start der Kalibrierung gehalten.

Manuelle Kalibrierung

Die manuelle Auslösung einer Kalibrierung (Handkalibrierung) erfolgt auf folgende Weise:

- 1. Codezahl für Benutzer-Freigabe eingeben (siehe Seite 22).
- 2. Taste "0" (GC-Status) drücken
- 3. Kalibrierung mit Taste "*" starten (Anzeigetext: "Start mit Taste *")

Manual EMC 500 · DE01 · 2008-02

Ablauf einer Kalibrierung

Der Ablauf einer Nachkalibrierung, ob durch Tastendruck oder durch die interne Uhr ausgelöst, ist immer gleich und sie dauert ca. 8 Minuten.

Prüfgasanalyse

Zur Analyse eines externen Prüfgases die Prüfgasflasche an den Gaseingang "C" (s. Zeichnung) anschließen. Zum Start der Prüfgasanalyse ist in Koordinate M 12 der Modus "Prüfg. Hand" zu wählen und zum Beenden wieder auf "AUS" zurückzusetzen. Eine Prüfgasanalyse kann aber maximal so lange dauern, wie in Koordinate M 13 als Zeitlimit (in Minuten) eingestellt ist. Danach schaltet der EMC 500 wieder um auf Messgasanalyse. Die Ergebnisse der Prüfgasanalyse werden in M 14 bis M 24 angezeigt.

Wartung

Der EMC 500 ist grundsätzlich wartungsfrei.

Wie bei jedem Messgerät ist darauf zu achten, dass nur sauberes, trockenes Gas zum Gerät geführt wird.

Als Option können Trockner- und Filtereinheiten geliefert werden.

Analysenrechner GC 9000

Das Bedienungskonzept:

Das Konzept der Bedienung wurde so gewählt, dass ohne großes Studium eines Handbuchs ein leichtes Arbeiten mit dem Gerät möglich ist.

Die Funktionstasten:

16

Die für den Bediener wichtigsten Daten sind mittels Funktionstasten direkt erreichbar. Es stehen Tasten für

> Datum Mittelwerte Modus Ausgänge Eingänge Maxwerte Status Brennwert / N-Dichte / Wobbe

zur Verfügung.

Das Koordinatensystem:

Ein Koordinatensystem erlaubt anhand einer Tabelle einen einfachen Zugriff auf alle Konfigurationsdaten, Mess- und Rechenwerte.

Das Koordinatensystem ist auf 21 Spalten und 52 Zeilen aufgebaut. Die Spalten sind mit A bis Y gekennzeichnet, die Zeilen laufen von 1 bis 52. Mittels Cursor - Tasten (Pfeile) kann man in diesem Koordinatensystem jeden Wert erreichen.

Das Anzeigefeld:

Eine zweizeilige alphanumerische Anzeige mit 20 Zeichen pro Zeile erlaubt die Darstellung der Daten und Messwerte zusammen mit Kurzbezeichnung und Einheit. Das Display ist mit einer blau leuchtenden Fluoreszenzanzeige aufgebaut und auch aus weitem Abstand noch gut lesbar.

Das System:

Auf der Fläche einer Europakarte wurde mit Hilfe modernster Technik (hochintegrierte Bauteile in SMD-Technik) ein komplettes Flow Computer System entwickelt. Bei voller Bestückung der Leiterplatte sind alle Eingänge, die ein komplexer Mengenumwerter benötigt, vorhanden. In der GC-Ausführung wird zur Erhöhung der Rechenleistung eine zweite CPU-Karte gesteckt. Diese CPU übernimmt im wesentlichen die Rechenarbeit und die Schnittstellenprotokolle während die Standard-CPU weiterhin alle Messaufgaben abwickelt.

Auf diese CPU ist huckepack ein Schnittstellenmodul gesteckt um das Gerät mit 4 weiteren Datenschnittstellen auszurüsten.

Manual EMC 500 · DE01 · 2008-02

Messwertarchiv:

Es stehen zwei verschiedene Software-Varianten zur Verfügung:

- Die Speichervariante (ohne DSfG-Schnittstelle) besitzt ein Archiv f
 ür die gemessenen Werte von Brennwert, Normdichte und CO₂-Anteil. Es werden 15 Minuten-Mittelwerte gebildet, die Speichertiefe beträgt 18 Monate
- Bei der DSfG-Variante erfolgt keine Speicherung der Messwerte. Zur Archivierung der eichfähig gemessenen Werte steht das zugelassene Messwertregistriergerät MRG 2203 zur Verfügung. Die Software dieses Gerätes ist speziell an den EMC 500 angepasst.

Die vorliegende Software-Variante ist in Y 24 abzulesen

Frontplatte GC 9000

Auf dem Typenschild steht u.a. die Seriennummer des Messwerks. Da die Betriebsparameter auf das Messwerk abgestimmt und im Analysenrechner gespeichert sind, ist ein Betrieb nur möglich, wenn der Analysenrechner an das richtige Messwerk angeschlossen ist!

Manual EMC 500 · DE01 · 2008-02

Bedienung GC 9000

Beschreibung der Funktionstasten

1	Anzeige ZEIT	
2	Anzeige DATUM	19
3	EMC-Archive	
4	Anzeige Kalibriermodi und mittels Tasten $ imes abla abla weitere mit dem Kalibriermodus zusammenhängenden Werte (außer Sollwerte)$	
5	Anzeige des Stromausganges Nr. 1 und mittels Tasten $ ilde{\Delta} abla$ alle mit dem Stromausgang zusammenhängenden Werte. Mit der Taste $ ilde{}$ kann man zum Stromausgang 2, 3 und 4 wechseln.	
6	Anzeige der Daten für Sensor 1 (Messwert und Parameter) Mit der Taste 짣 werden Sensor 2, Druck- und Temperaturwerte erreicht.	
7	Auswahl der berechneten Größen (z.B. $H_{s,n}$, ρ_n ,) und der Einheiten	
8	Versionsparameter und Testwerte (zum Test der Berechnungen)	
9	Anzeige Brennwert, Wobbezahl, Normdichte, Dichteverhältnis, Heizwert und ggf. CO2 einschl. der dazugehörigen Vorgabewerte	
0	Anzeige Kalibrierstatus und mittels Tasten $ imes abla abla $ alle mit dem Kalibrierstatus zusammenhängenden Werte einschl. Auslösung und Ergebnisse	
(±,	Kalibrier-, Daten- und Revisionsprotokoll	

Sondertasten

 $\wedge \nabla \triangleright \triangleleft$

Löschen, Eingabe, Auswahl

20

Innerhalb einer Spalte zeilenweise aufwärts oder abwärts, in Betriebsartenauswahl: rollen.

Pfeil rechts / links

innerhalb einer Zeile spaltenweise rechts oder links, mit der Möglichkeit, mit über die erste Spalte zur letzten Spalte und mit büber die letzte Spalte zur ersten Spalte zu springen. Sonderfunktion in der Mittelwert-Spalte

Allgemein gilt für die Cursortasten:

Innerhalb einer Spalte werden freie Felder automatisch übersprungen und innerhalb einer Zeile werden nichtbelegte Spalten übersprungen. Ist die angesprungene Spalte zwar belegt, jedoch das Zeilenfeld leer, wird automatisch in das oberste belegte Feld gesprungen. Beim Sprung in die nächste Spalte wird wieder die ursprüngliche Zeilennummer selektiert.

Fehler Löschen

- a) Fehleranzeige im Normalmodus
- b) Spezialfunktion (Fehler löschen)
- c) Löschen von fehlerhaften Eingaben im Programmiermodus. Der Zustand vor der Eingabe der 1. Ziffer wird wiederhergestellt.

Eingabe

Einleiten und Abschluss einer Dateneingabe. Die eingegebenen Werte werden übernommen.

Auswahl

Umschaltung von Kurzbezeichnung auf Koordinatendarstellung und von Koordinatendarstellung auf Kurzbezeichnung. Diese Umschaltung ist bei fast allen Feldern möglich (auch im Programmiermodus). Auslösen von Spezialfunktionen (gemäß Hinweis im Display)

Manual EMC 500 · DE01 · 2008-02

Funktion Fehler anzeigen / Fehler löschen

Fehler anzeigen

Die Signalisierung, dass ein Fehler ansteht, erfolgt mit der Leuchtdiode **Alarm** auf der Frontplatte des Gerätes bzw. mit einem potentialfreien Kontakt an der Klemmenleiste. Bei anstehenden Fehlern blinkt die Leuchtdiode. Sind die Fehler nicht mehr aktuell, geht die Diode auf Dauerlicht. Zur Anzeige von Fehlertexten wird die Taste **Fehler / Löschen** verwendet. Nach dem Drücken dieser Taste erscheint im Anzeigefeld **Fehleranzeige** und im Sekundentakt erscheinen in der unteren Zeile die Fehlertexte. Alle Meldungen werden im Display der Reihe nach angezeigt. Solange die Alarm-LED blinkt, steht noch mindestens ein Fehler aktuell an. Zeigt die Alarm-LED Dauerlicht, so sind alle angezeigten Fehlermeldungen nicht mehr aktuell und das Gerät arbeitet wieder fehlerfrei.

Fehler löschen

Die Uhrzeit und das Datum des aufgetretenen Fehlers werden in den Feldern R3 und R4 angezeigt. Steht mehr als ein Fehler an, so wird die Uhrzeit und das Datum des zuerst aufgetretenen Fehlers angezeigt.

Bedienungsbeispiele

Anzeigen von Messwerten, Konstanten und Betriebsarten

Taste 9 (Brennwert) drücken

EMC-Messwerte *Hs 10,123 kWh/m3
EMC-Messwerte *rho,n 0,6478 kg/m3
EMC-Messwerte Ws 13,254 kWh/m3
EMC-Komponenten EMC-rn Ein
EMC-Komponenten EMC-dv Ein

Freigabe der Programmierung

a) Codezahl für Benutzer-Freigabe

Taste 8 (Maxwerte) und 1 mal V drücken

EMC - 9000 Code * * * * * * *

Eingabe-Taste drücken

EMC - 9000 Code ????????

Die Zifferneingabe bleibt unsichtbar, jede eingegebene Stelle wird als Echo mit einem Stern gekennzeichnet. Es müssen alle acht Ziffern eingegeben werden.

Ziffern eingeben

22

mit Eingabe abschließen

```
EMC - 9000
Code * * * * * * *
```

bei richtiger Codezahl)

Stimmt die Codezahl, dann beginnt das NETZ / AKKU -LED auf der Frontplatte im 1-Sekunden-Rhythmus zu blinken und die untere Displayzeile wird heller geschaltet. Stimmt die Codezahl nicht, so springt die Anzeige wieder zurück in die Eingabebereitschaft und bleibt dunkel.

E	MC - 9000	
Code	????????	(bei falscher Codezahl)

Vorgang mit richtiger Codezahl wiederholen!

Der Rechner öffnet den Zugriff auf die Benutzerdaten. Um Daten zu ändern, muss die gewünschte Koordinate in der unteren Displayzeile selektiert und die **Eingabe**- Taste gedrückt werden. Die Helligkeit der unteren Displayzeile wird reduziert, um anzuzeigen, dass der Zugriff auf das Koordinatenfeld freigegeben ist. Mit der Taste **Fehler / Löschen** können Eingabefehler korrigiert werden, bevor der Wert mit der **Eingabe**-Taste übernommen wird.

Will man nach erfolgter Programmierung den Rechner-Zugriff wieder schließen, so muss das Feld "Code" angewählt und die Taste Eingabe gedrückt werden. Falls dies einmal vergessen wird, schließt der Rechner selbständig nach ca. 30 Minuten den Zugriff ab. Eine Änderung der Codezahl ist möglich, wenn sich der plombierbare Schiebeschalter in der Eingabe-Stellung befindet.

b) Plombierter Schalter für das Eichamt

Wird der Schalter betätigt, so beginnt das NETZ / AKKU -LED im 1-Sekunden-Rhythmus zu blinken und der Zugriff auf die Speicher ist möglich (incl. Codezahl). Um Daten zu ändern, muss die gewünschte Koordinate in der unteren Displayzeile selektiert und die **Eingabe**-Taste gedrückt werden. Die Helligkeit der unteren Displayzeile wird reduziert, um anzuzeigen, dass der Zugriff auf das Koordinatenfeld freigegeben ist.

Programmierung einer neuen Konstanten

Der Vorgabewert für den CO₂-Anteil soll geändert werden.

Taste 9 (Brennwert) drücken **EMC-Parameter** 10,123 kWh/m3 Hs 2 mal Adrücken 23 **EMC-Parameter** CO2-vg 1,000 Mol% Schalter auf "Eingabe" (in diesem Fall reicht auch die Codezahl) Taste Eingabe betätigen zur Kennzeichnung des Programmierzustandes wird die untere Zeile dunkler und die Leuchtdiode NETZ / AKKU blinkt im Sekundentakt. Taste "1" drücken **EMC-Parameter** CO2-vg 1 Mol% Tasten "±," "1" "5" und "0" in Folge drücken **EMC-Parameter** CO2-vg Mol% 1,150 Taste Eingabe drücken **EMC-Parameter** CO2-vg 1,150 Mol% Display wird hell

Mit Schalter Eingabe verriegeln

Programmierung abgeschlossen!

Allgemeines zur Eingabe neuer Werte:

Ist ein Wert mit der Codezahl verriegelt (Benutzerdaten), so muss zuerst die richtige Codezahl in der Funktion **Modus** im Feld (Y5) eingegeben werden. Die Eingabe kann in der Darstellungsart Kurzbezeichnung oder Koordinate erfolgen. Mittels der **Auswahl**-Taste kann jederzeit umgeschaltet werden.

Bei Werten in Exponentialdarstellung wird das "E" durch Drücken der ± Taste eingegeben. Dazu ist es notwendig, dass zuvor ein Komma eingegeben wurde. So ist z.B. die Eingabe von 3E-5 nicht möglich sondern es muss 3,0E-5 eingegeben werden.

Programmierung eines neuen Modus

Der Kalibriermodus im Betrieb soll von "Aus" auf "Kalibrieren" geändert werden.

Taste 4 (GC Modus) drücken

1 mal 💛 drücken

24

EMC-Modus KalStart Kalibrieren

EMC-Modus KalBetr Aus

Schalter auf "Eingabe"

Zur Kennzeichnung des Programmierzustandes blinkt Leuchtdiode NETZ/AKKU im Sekundentakt und nach betätigen der **Eingabe**-Taste wird die untere Displayzeile dunkler.

Taste 🔽 2 mal drücken

EMC-Modus KalBetr Kalibrieren

Taste Eingabe drücken und mit Schalter auf "Eingabe" verriegeln.

Programmierung Stromausgänge

Anwahl der gewünschten Werte in den Spalten F bis I über Funktionstaste 5 (Ausgang) und die Cursor-Tasten. Zuerst in Feld 10 den Modus festlegen, dann in Feld 7 die auszugebende Messgröße auswählen und dann noch die Grenzwerte in den Feldern 4 und 5 programmieren. Der konstante Eichstrom wird in Feld 6 vorgegeben.

Beispiel: Auf Stromausgang 1 soll der Wobbeindex als Strom von 4 bis 20 mA ausgegeben werden.

- 1. Taste 5 (Ausgang) drücken.
- 2. 1 mal drücken. (Es wird der aktuelle Modus angezeigt).
- 3. Taste **Eingabe** drücken.
- 4. Im Feld F 10 mit den Tasten \bigtriangleup und \bigtriangledown den Modus "4-20mA" auswählen.
- 5. Taste **Eingabe** drücken.
- 6. 3 mal \bigtriangleup drücken.
- 7. Im Feld F 7 mit den Tasten 🛆 und 💛 "Wobbeindex" auswählen.
- 8. Taste **Eingabe** drücken.

Jetzt sind noch die Grenzwerte der Wobbezahl für 4 und 20 mA einzugeben.

Koordinatensystem GC 9000

Übersicht über die Matrix

Spalte	А	В	С	D	E
Überschrift	EMC Kalibrierung	-	EMC-Konstanten	EMC-Modus	variabel
Inhalt	 Kalibrierergebnisse (Zeilen 2-9) Soll- und Istwerte der Kalibrierungen (Zeilen 13-30) 	Diese Spalte enthält Rechenwerte, die nicht angezeigt werden.	Konstanten, die zur Berechnung von Brennwert, Normdichte etc. benötigt werden (Zeilen 2-63)	 Auswahl der Kalibriermodi (Zeilen 2-25) Kalibrierstatus (Zeilen 26-36) 	EMC-Archive mit 15- Minutenmittelwerten sowie aktuellen Werten (Zeilen 2-58)
Seite	27	-	28	29	30

Spalte	F - I	J	К	М	Ν
Überschrift	Stromausgang 1 - 4	variabel	EMC-Komponenten	EMC-Messwerte	DSfG 2
Inhalt	Programmierung der Stromausgänge 1-4 (Zeilen 2-10)	Parameter und Modi der seriellen Schnittstellen (Zeilen 2-66)	 Auswahl, welche Größen aus den Sensormesserten be- rechnet werden sollen (Zeilen 2-24) Ergebnisse der letzten gültigen Messung (Zeilen 2-24) 	 Aktuelle Mess- ergebnisse der in Spalte K ausge- wählten Größen (Zeilen 2-11) Alarmgrenzwerte und Vorgabewerte (Zeilen 27 20) 	Füllstandsanzeiger der DSfG-Archive (Zeilen 2-41)
Soito	21 24	25	24	27	20
Seile	31-34	35	30	37	39

Spalte	0	Р	۵	R	S
Überschrift	EMC-Drucker	EMC-Kalender	EMC-Uhr	Fehleranzeige	DSfG 1
Inhalt	Manuelle Ausdrucke starten und auto- atische Ausdrucke programmieren (Zeilen 2-13)	Anzeige und Ein- stellung des Datums (Zeilen 2-3)	Anzeige und Einstellung der Uhrzeit (Zeilen 2-6)	Anzeige und Löschen von Fehlermeldungen (Zeilen 2-5, 41-46)	Parameter und Statusanzeigen für den DSfG-Bus (Zeilen 2-62)
Seite	41	42	42	43	44

Spalte	T - U	V	W	Х	Y
Überschrift	EMC Sensor 1 - 2	EMC Druck 1	EMC Gehäusetemperatur	EMC Blocktemperatur	EMC - 9000
Inhalt	Eingangswerte und Parameter der thermischen Sensoren 1 und 2 (Zeilen 2-37)	Eingangswerte und Parameter für Drucksensor und CO2-Messung (Zeilen 2-40)	Eingangswerte und Parameter des Sensors für die Raumtemperatur (Zeilen 2-37)	Eingangswerte und Parameter des Sensors für die Temperatur in der Messeinheit (Zeilen 2-37)	 Allgemeine Geräteparameter, z.B.: Codezahl (Zeile 5), Testwerte zur Überprüfung der Berechnungen (Zeilen 10-16, 43), Status der Schnittstellen (Zeilen 31-42)
Seite	47 - 48	49	50	51	52

ANALYSENRECHNER GC 9000

Aufbau einer Spalte

26

gelangen

Betätigung zusätzlicher Tasten,

um zur gewünschten Spalte zu

indirekt

Eingang

rechts

und 1 mal

Bezeichnung Spalten A...Y. Die 1. Zeile (Kopfzeile) enthält immer eine Überschrift.

	(Spalte U	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	S2-EMC	Überschrift EMC-Sensor 2		
2	А	S2	EMC-Sensor 2	mV	
3	А	S2-in	Eingangswert EMC-Sensor 2	mV	
(4)) A	S2-Oa	Aktueller Offset Sensor 2	mV	-
6	E	S2min	unterer Alarmgrenzwert EMC-Sensor 2	mV	
7	Ā	S2max	oberer Alarmgrenzwert EMC-Sensor 2	mV)	
14	E/	(\$2-mf) <	Mittelungsfaktor EMC-Sensor 2	\mathcal{T}	
				1	

Einheit des angezeigten oder programmierten Wertes. (Bei Auswahlfeldern werden diese mit Text bezeichnet.)

1

des GC 9000

Feldbezeichnung in der Anzeige

Matrixfeldes

- Codierung der Matrixfelder
- A = Anzeigewert
- B = Zugriff auf die Datenfelder mit Codezahl gesichert

Kurzbezeichnung des

E = Zugriff auf die Datenfelder mit Schiebeschalter gesichert

Bezeichnung der Zeile einer Spalte. Die Kopfzeile (K) wird nicht in Koordinatendarstellung ausgegeben. Erläuternder Text zu einem Koordinatenfeld

Beschreibung der einzelnen Spalten

EMC-Kalibrierung

direkt

GC-Status

		Spalte A	Beschreibung der Koordinate	Einheit	Bemerkungen
1	Α	STATUS	Überschrift EMC-Kalibrierung		
2	Α	Spülz-1	EMC-Ablauf Kalibrierzeiten	S	1)
3	Α	HsKal	Kalibrierwert EMC-Brennwert	s. K/21	
4	Α	WsKal	Kalibrierwert EMC-Wobbeindex	s. K/22	
5	Α	rnKal	Kalibrierwert EMC-Normdichte	kg/m3	
6	Α	dvKal	Kalibrierwert EMC-Dichteverhaeltnis		
8	Α	HiKal	Kalibrierwert EMC-Heizwert	s. K/23	
9	Α	CO2Kal	Kohlendioxid-Messwert zur Kalibrierzeit	s. K/24	
13	Ε	HsSoll	Kalibrier-Sollwert EMC-Brennwert	s. K/21	
14	Α	HsLast	Kalibrier-Istwert EMC-Brennwert	s. K/21	
15	Α	HsDiff	Soll-Ist Abweichung EMC-Brennwert	%	
16	Ε	WsSoll	Kalibrier-Sollwert EMC-Wobbeindex	s. K/22	
17	Α	WsLast	Kalibrier-Istwert EMC-Wobbeindex	s. K/22	
18	Α	WsDiff	Soll-Ist Abweichung EMC-Wobbeindex	%	
19	Ε	rnSoll	Kalibrier-Sollwert EMC-Normdichte	kg/m3	
20	Α	rnLast	Kalibrier-Istwert EMC-Normdichte	kg/m3	
21	Α	rnDiff	Soll-Ist Abweichung EMC-Normdichte	%	
22	Ε	dvSoll	Kalibrier-Sollwert EMC-Dichteverh.		
23	Α	dvLast	Kalibrier-Istwert EMC-Dichteverh.		
24	Α	dvDiff	Soll-Ist Abweichung EMC-Dichteverh.	%	
25	Ε	HiSoll	Kalibrier-Sollwert EMC-Heizwert	s. K/23	
26	Α	HiLast	Kalibrier-Istwert EMC-Heizwert	s. K/23	
27	Α	HiDiff	Soll-Ist Abweichung EMC-Heizwert	%	
28	Ε	CO2Soll	Kalibrier-Sollwert EMC-Kohlendioxid	%	
29	Α	CO2Last	Kalibrier-Istwert EMC-Kohlendioxid	%	
30	Α	CO2Diff	Soll-Ist Abweichung EMC-Kohlendioxid	%	
36	Α	TN	Normtemperatur		
37	Α	TNB	Normtemperatur Brennwert		

1) Wenn zuvor die Codezahl eingegeben wurde, kann in diesem Feld mit der Taste "*" eine Handkalibrierung ausgelöst werden (Anzeigetext beachten).

ANALYSENRECHNER GC 9000

EMC-Konstanten

indirekt

GC-Status

und 1 mal

.....

Beschreibung der Koordinate Einheit Bemerkungen Spalte C A KON HS Überschrift Konstanten EMC-Konstanten 1 2 E Hs-C1 Parameter C1 EMC-Brennwert 1) 3 E Hs-C2 Parameter C2 EMC-Brennwert 1) 4 E Hs-C3 Parameter C3 EMC-Brennwert 1) 5 E Hs-C4 Parameter C4 EMC-Brennwert 1) 6 E Hs-C5 Parameter C5 EMC-Brennwert 1) 7 Ε Hs-C6 Parameter C6 EMC-Brennwert 1) 8 E Hs-C7 Parameter C7 EMC-Brennwert 1) 9 E Hs-A0 Parameter A0 EMC-Brennwert 10 E Hs-A1 Parameter A1 EMC-Brennwert Parameter F0 EMC-Brennwert E Hs-F0 11 E Hs-Z0 12 Parameter Z0 EMC-Brennwert 13 E Ws-C1 Parameter C1 EMC-Wobbeindex 1) Ε 1) 19 E Ws-C7 Parameter C7 EMC-Wobbeindex 1) 20 Ε Ws-A0 Parameter A0 EMC-Wobbeindex Parameter A1 EMC-Wobbeindex 21 E Ws-A1 22 **E** Ws-F0 Parameter F0 EMC-Wobbeindex 23 E Ws-Z0 Parameter Z0 EMC-Wobbeindex Parameter C1 EMC-Normdichte 24 E rn-C1 1) Е 1) ... 30 E rn-C7 Parameter C7 EMC-Normdichte 1) 31 E rn-A0 Parameter A0 EMC-Normdichte 32 E rn-A1 Parameter A1 EMC-Normdichte 33 Ε rn-F0 Parameter F0 EMC-Normdichte 34 E rn-Z0 Parameter Z0 EMC-Normdichte 35 E dv-C1 Parameter C1 EMC-Dichteverh. 1) Ε 1) ... 41 E dv-C7 Parameter C7 EMC-Dichteverh. 1) 42 E dv-A0 Parameter A0 EMC-Dichteverh. 43 E dv-A1 Parameter A1 EMC-Dichteverh. 44 E dv-F0 Parameter F0 EMC-Dichteverh. 45 E dv-Z0 Parameter Z0 EMC-Dichteverh. 46 E Hi-C1 Parameter C1 EMC-Heizwert 1) Ε 1) 52 E Hi-C7 Parameter C7 EMC-Heizwert 1) Parameter A0 EMC-Heizwert 53 E Hi-A0 E Hi-A1 Parameter A1 EMC-Heizwert 54 55 E Hi-F0 Parameter F0 EMC-Heizwert 56 E Hi-Z0 Parameter Z0 EMC-Heizwert 57 E CH-C1 Parameter C1 EMC-Kohlenwasserstoffe 1)

.....

Wert in Exponentialdarstellung

Parameter C7 EMC-Kohlenwasserstoffe

Ε

63 E CH-C7

Manual EMC 500 · DE01 · 2008-02

1)

1)

EMC-Modus

direkt

GC-Modus

		Spalte D	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	KalMod	Überschrift Konstanten EMC-Modus		
2	Ε	KalStart	EMC-Kalibrierbetriebsart beim Start		
			Aus / Offset / Kalibrieren / Offs+Kalib		
3	Ε	KalBetr	EMC-Kalibrierbetriebsart im Betrieb		
			Aus / Offset / Kalibrieren / Offs+Kalib		
5	Ε	DP-Cal	Kalibrierwert EMC-Differenzdruck		
6	Ε	p-Kal	EMC-Kalibrierdruck	mbar	
7	Ε	t-Kal	EMC-Kalibriertemperatur	°C	
8	Ε	Kal-max	EMC-maximale Kalibrierabweichung	%	
9	Ε	T-Spül1	Spülzeit 1 EMC-Kalibrierung	s	1)
		-	Zulässige Werte: zwischen ≥6 und ≤60000 Sekunden		
10	Ε	T-Mess	Messzeit EMC-Kalibrierung	S	1)
			Zulässige Werte: zwischen ≥6 und ≤999 Sekunden		,
11	Ε	T-Spül2	Spülzeit 2 EMC-Kalibrierung	S	1)
		-	Zulässige Werte: zwischen ≥6 und ≤60000 Sekunden		,
12	Ε	T-Ausgl	Ausgleichszeit EMC-Kalibrierung	S	1)
		-	Zulässige Werte: zwischen ≥6 und ≤999 Sekunden		,
13	Ε	rn-Luft	Normdichte Luft		
14	Ε	EMC-MS	EMC Master / Slave Funktion		
15	Ε	Hs-Off	Maximaler Brennwert-Offset durch GC	s. K/21	
16	Ε	rn-Off	Maximaler Normdichte-Offset durch GC	kg/m3	
17	Ε	Ws-Off	Maximaler Wobbeindex-Offset durch GC	s. K/22	
18	Ε	dv-Off	Maximaler Dichteverhältnis-Offset durch GC		
19	Ε	Hi-Off	Maximaler Heizwert-Offset durch GC	s. K/23	
20	Ε	CO2-Off	Maximaler Kohlendioxid-Offset durch GC	s. K/24	
21	Ε	KalMode	EMC-Kalibrierbetrieb allgemein		2)
			Manuell / Automatik		,
22	Ε	KalTag	Kalibrierstart am gewählten Wochentag		3)
		Ū.	Sonntag / Montag / Dienstag / Mittwoch / Donnerstag /		,
			Freitag / Samstag		
23	Ε	T-KStart	EMC-Startzeit für automatische Kalibrierung	Uhr	
24	Ε	Kal-Auto	EMC-Kalibrierbasis		
			Minute / Stunde / Tag / Woche		
25	Ε	T-Auto	EMC-Kalibrierintervall	var	
26	А	L-H	Zeitpunkt der letzten EMC-Handkalibrierung		
27	A	Anz-HKal	Anzahl der Hand Kalibrierungen		
28	Α	L-A	Zeitpunkt der letzten EMC-Autokalibrierung		
32	А	Anz-AKal	Anzahl der Automatik Kalibrierungen		
33	А	Next-Kal	Zeit bis zur nächsten Kalibrierung	min	
34	А	AK-Flag	EMC-Status automatische Kalibrierung		
35	А	Anz-FKal	Anzahl der Fehl Kalibrierungen		
36	А	KalFlag	EMC-Kalibrierstatus		

1) Die geänderte Einstellung wird erst nach einem Neustart des Rechners übernommen.

- Voraussetzung f
 ür den Start der Kalibrierung ist die Beendigung des Startbetriebs. Nach dem Start des Automatikbetriebs wird der Synchronisationsvorgang bei einem Netzausfall, nach Netz-Ein wieder neu gestartet.
- 3) Der Kalibriertag bestimmt den Synchronisationszeitpunkt bei der automatischen Kalibrierung. Mit dem Erreichen des Kalibriertags und der eingestellten Zeit, beginnt der Kalibrierzyklus für die Automatikintervalle Tag und Woche (siehe Feld "Kal-Auto"). Für Intervalle auf Stunden bzw. Minutenbasis, ist der Synchronisationszeitpunkt der nächste Stunden- bzw. Minutenwechsel, unabhängig vom Wochentag und der Startzeit. Mit dem Erreichen des Synchronisationszeitpunkts wird eine Kalibrierung ausgelöst.

EMC-Archive

direkt

Mittelwerte

				1	
		Spalte E	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	ARCHIV	Überschrift EMC-Archive		
2	А	S-Archiv	EMC-Archiv Stundenmittelwerte		
3	Α	D-Archiv	EMC-Archiv Tagesmittelwerte		
4	А	MO-Archiv	EMC-Archiv Monatsmittelwerte		
5	А	M-Archiv	EMC-Archiv Minutenmittelwerte		
6	А	A-Archiv	EMC-Archiv aktuelle Werte		
7	Ε	T-AStart	EMC-Startzeitszeit/Tageswechsel für Archive	Uhr	
8	Е	AktMZeit	Mittlungszeit für aktuelle, korrigierte Werte	s	
9	A	HsGC	aktueller GC-korrigierter Brennwert	s. K/21	
10	А	HsEMC	aktueller EMC Brennwert	s. K/21	
11	А	HsOffGC	aktueller Brennwert GC-Offset	s. K/21	
12	Α	Hs15	15 Minutenmittel unkorrigierter Brennwert	s. K/21	
13	A	Hs60	Stundenmittel unkorrigierter Brennwert	s. K/21	
14	A	HsGC60	Stundenmittel GC-korrigierter Brennwer	s K/21	
16	A	rnGC	aktuelle GC-korrigierte Normdichte	ka/m3	
17	A	rnEMC	aktuelle EMC Normdichte	kg/m3	
18	Δ	rnOffGC	aktueller Normdichte GC-Offset	kg/m3	
10	Δ	rn15	15 Minutenmittel unkorrigierter Normdichte	kg/m3	
20	Δ	rn60	Stundenmittel unkorrigierter Normdichte	kg/m3	
20	Δ	rnGC60	Stundenmittel GC-korrigierter Normdichte	kg/m3	
23	Δ	WeGC	aktueller GC-korrigierter Wohleindex	s K/22	
24	Δ	WeEMC	aktueller EMC Wobbeindex	s. K/22	
24	^	WeOffCC	aktueller Wobbeindex CC Offect	3. K/22	
20	A	We15	15 Minutopmittel unkerrig. Webbeindex	5. K/22	
20	A	We60	Stundonmittel unkorrig. Webbeindex	5. K/22	
21	A	Wecceo	Stundenmittel CC kerrig Webbeindex	5. N/22	
20	A	WSGC00	Stundenmittel GC-korrig. Wobbelindex	5. N/22	
30	A	dvGC	aktuelles GC-korrig. Dichteverhältnis		
31	A		aktuelles ENC Dichleverhaltnis		
32	A	dvOliGC	Aktueller Dichteverhaltnis GC-Oliset		
33	A	dV15	15 Minutenmiter unkonng. Dichteverhältnis		
34	A	dV60	Stundenmittel Unkorrig. Dichteverhaltnis		
30	A	UVGC60	Stundenmitter GC-korng. Dichteverhältnis	a 1//00	
3/	A	HIGC		S. K/23	
38	A	HIEMC	aktueller EMC Heizwert	S. K/23	
39	A	HIOTIGC	aktueller Heizwert GC-Offset	s. K/23	
40	A	HI15	15 Minutenmittel unkorrig. Heizwert	S. K/23	
41	A	HI60		s. K/23	
42	A	HIGC60	Stundenmittel GC-korrig. Heizwert	s. K/23	
44	Α	CO2GC	aktueller GC-korrigierter CO2-Anteil	s. K/24	
45	Α	CO2EMC	aktueller EMC CO2-Anteil	s. K/24	
46	А	CO2OffGC	aktueller CO ₂ GC-Offset	s. K/24	
47	А	CO215	15 Minutenmittel unkorrig. CO2-Anteil	s. K/24	
48	А	CO260	Stundenmittel unkorrig. CO2-Anteil	s. K/24	
49	А	CO2GC60	Stundenmittel GC-korrig. CO2-Anteil	s. K/24	
53	A	Mo-idx	Index Monatsarchiv		
55	A	D-idx			
56	A	H-idx	Index Stundenarchiv	1	
57	A	M-idx	Index Minutenarchiv	1	
58	Δ	S-idx	Index Sekundenarchiv	1	
59	B	MS-Nr.	Messstellen-Nr	1	
					-

Bei der DSfG-Ausführung ist diese Spalte sichtbar, aber die Archive werden nicht gefüllt.

Stromausgang 1

direkt

Ausgang

		Spalte F	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	Strom 1	Überschrift EMC-Stromausgang 1		
2	А	I1A	phys. Wert Stromausgang 1	var	3)
3	А	11	Ausgangsstrom 1	mA	3)
4	В	11<	Messbereichs-Minimum Ausgangsstrom 1	var	1)
5	В	11>	Messbereichs-Maximum Ausgangsstrom 1	var	1)
6	В	I1E	Eichstrom Stromausgabe 1	mA	2)
7	В	I1A	<u>Quelle Ausgangsstrom 1</u> Brennwert / Wobbeindex / Normdichte / Dichteverh. / Heizwert / Kohlend. / Methanzahl / GC-korr. Hs		
8	Ε	I1-K	Korrekturwert für Stromausgang 1		
9	В	I1-M	Mittelungsfaktor Ausgangsstrom 1	var	
10	В	l1-mod	<u>Geber Ausgangsstrom 1</u> 0-20mA / 4-20mA / Eichstrom / Aus		

- 1) Zuordnung der physikalischen Grenzen zu 0 / 4 mA bzw. 20 mA
- 2) Ist in I1-mod die Betriebsart "Eichstrom" eingestellt, so gibt der Ausgang 1 einen konstanten Strom aus dessen Wert im Feld F6 eingegeben wird.
- 3) Im Fehlerfall entspricht die Stromanzeige nicht dem umgerechneten physikalischen Wert. Der Strom wird in Abhängigkeit des eingestellten Modus berechnet aus dem Vorgabewert, dem letzten Messwert, oder er wird Null.

ANALYSENRECHNER GC 9000

Stromausgang 2

indirekt

Ausgang

und 1 mal

		Spalte G	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	Strom2	Überschrift EMC-Stromausgang 2		
2	А	12A	phys. Wert Stromausgang 2	var	3)
3	А	12	Ausgangsstrom 2	mA	3)
4	В	12<	Messbereichs-Minimum Ausgangsstrom 2	var	1)
5	В	12>	Messbereichs-Maximum Ausgangsstrom 2	var	1)
6	В	I2E	Eichstrom Stromausgabe 2	mA	2)
7	В	I2A	Quelle Ausgangsstrom 2		
			Brennwert / Wobbeindex / Normdichte / Dichteverh. /		
			Heizwert / Kohlend. / Methanzahl / GC-korr. Hs		
8	Ε	I2-K	Korrekturwert für Stromausgang 2		
9	В	12-M	Mittelungsfaktor Ausgangsstrom 2	var	
10	В	I2-mod	Geber Ausgangsstrom 2		
			0-20mA / 4-20mA / Eichstrom / Aus		

- Zuordnung der physikalischen Grenzen zu 0 / 4 mA bzw. 20 mA 1)
- Ist in I2-mod die Betriebsart "Eichstrom" eingestellt, so gibt der Ausgang 2 einen konstanten 2) Strom aus dessen Wert im Feld G6 eingegeben wird.
- 3) Im Fehlerfall entspricht die Stromanzeige nicht dem umgerechneten physikalischen Wert. Der Strom wird in Abhängigkeit des eingestellten Modus berechnet aus dem Vorgabewert, dem letzten Messwert, oder er wird Null.

Stromausgang 3

indirekt

Ausgang

und 2 mal

		Spalte H	Beschreibung der Koordinate	Einheit	Bemerkungen
1	Α	Strom3	Überschrift EMC-Stromausgang 3		
2	А	13A	phys. Wert Stromausgang 3	var	3)
3	А	13	Ausgangsstrom 3	mA	3)
4	В	13<	Messbereichs-Minimum Ausgangsstrom 3	var	1)
5	В	3>	Messbereichs-Maximum Ausgangsstrom 3	var	1)
6	В	I3E	Eichstrom Stromausgabe 3	mA	2)
7	В	13A	Quelle Ausgangsstrom 3		
			Brennwert / Wobbeindex / Normdichte / Dichteverh. / Heizwert / Kohlend. / Methanzahl / GC-korr. Hs		
8	Ε	13-K	Korrekturwert für Stromausgang 3		
9	В	I3-M	Mittelungsfaktor Ausgangsstrom 3	var	
10	В	I3-mod	Geber Ausgangsstrom 3		
			0-20mA / 4-20mA / Eichstrom / Aus		

- 1) Zuordnung der physikalischen Grenzen zu 0 / 4 mA bzw. 20 mA
- 2) Ist in I3-mod die Betriebsart "Eichstrom" eingestellt, so gibt der Ausgang 3 einen konstanten Strom aus dessen Wert im Feld H6 eingegeben wird.
- 3) Im Fehlerfall entspricht die Stromanzeige nicht dem umgerechneten physikalischen Wert. Der Strom wird in Abhängigkeit des eingestellten Modus berechnet aus dem Vorgabewert, dem letzten Messwert, oder er wird Null.

ANALYSENRECHNER GC 9000

Stromausgang 4

indirekt

Ausgang

und 3 mal

		Spalte I	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	Strom4	Überschrift EMC-Stromausgang 4		
2	А	I4A	phys. Wert Stromausgang 4	var	3)
3	А	14	Ausgangsstrom 4	mA	3)
4	В	4<	Messbereichs-Minimum Ausgangsstrom 4	var	1)
5	В	4>	Messbereichs-Maximum Ausgangsstrom 4	var	1)
6	В	I4E	Eichstrom Stromausgabe 4	mA	2)
7	В	I4A	Quelle Ausgangsstrom 4 Brennwert / Wobbeindex / Normdichte / Dichteverh. /		
Q	F	1 / _K	Heizwert / Koniena. / Metnanzani / GC-Korr. Hs		
9	В	14-M	Mittelungsfaktor Ausgangsstrom 4	var	
10	В	l4-mod	<u>Geber Ausgangsstrom 4</u> 0-20mA / 4-20mA / Eichstrom / Aus		

- Zuordnung der physikalischen Grenzen zu 0 / 4 mA bzw. 20 mA 1)
- Ist in I4-mod die Betriebsart "Eichstrom" eingestellt, so gibt der Ausgang 4 einen konstanten 2) Strom aus dessen Wert im Feld 16 eingegeben wird.
- 3) Im Fehlerfall entspricht die Stromanzeige nicht dem umgerechneten physikalischen Wert. Der Strom wird in Abhängigkeit des eingestellten Modus berechnet aus dem Vorgabewert, dem letzten Messwert, oder er wird Null.

Serielle Schnittstellen

indirekt

Gas-Komp.

und 1 mal

		Spalte J	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	RS-FRONT	Überschrift serielle Front-Schnittstelle		
2	В	Fr-Typ	Frontbuchse Typ: Aus		1)
12	А	RS_LPT	Überschrift serielle Druckerschnittstelle C1		
13	В	С1-Тур	Buchse C1 Typ: Aus / Line-Printer		
14	В	C1-Baud	Buchse C1 Baudrate: 9600 / 19200		
21	А	RS_C2	Überschrift serielle Datenschnittstelle C2		
22	Ε	С2-Тур	Buchse C2 Typ: Aus / DSfG		
24	Ε	C2-Baud	Buchse C2 Baudrate: 9600 / 19200 / 38400		
35	А	RS_C3	Überschrift serielle Datenschnittstelle C3		
36	Ε	С3-Тур	Buchse C3 Typ:		
			Aus / MB-SI. ASCII / MB-SI. RTU / RMG-Bus		
37	Ε	C3-Baud	Buchse C3 Baudrate: 9600 / 19200		
38	Ε	C3-Bits	Buchse C3 Anzahl Bits: 7/8		
39	Е	C3-Pari	Buchse C3 Parität: Keine / Gerade / Ungerade		
40	Ε	C3-Stop	Buchse C3 Stopbits: 1/2		
41	Е	C3-Test	Buchse C3 Modbustest		2)
			Aus / Mod I-10 UI / Val F-02 FL / Nr. Y-20 UL /		
			Sim x-xx DL / Sim R-46 ST / Diagnostik		
42	Ε	C3-UI	Buchse C3 unsigned int Ubertragung: 1234 / 4321		
43	Ε	C3-UL	Buchse C3 unsigned long Übertragung: 1234 / 4321		
44	Ε	C3-FL	Buchse C3 float Übertragung: 1234 / 4321		
45	Ε	C3-DB	Buchse C3 double Übertragung: 1234 / 4321		
46	Ε	C3-MbAdr	Buchse C3 Modbus Adresse		
47	Ε	C3-Offs	Buchse C3 Modbus Registeroffset		
48	А	C3-Text	Übertragungstext RMG-Bus		
50	А	RS_C4	Überschrift serielle Datenschnittstelle C4		
51	Е	С4-Тур	Buchse C4 Typ:		
			Aus / MB-SI. ASCII / MB-SI. RTU / RMG-Bus		
52	Ε	C4-Baud	Buchse C4 Baudrate: 9600 / 19200		
53	Ε	C4-Bits	Buchse C4 Anzahl Bits: 7/8		
54	Ε	C4-Pari	Buchse C4 Parität: Keine / Gerade / Ungerade		
55	Ε	C4-Stop	Buchse C4 Stopbits: 1/2		
56	Е	C4-Test	Buchse C4 Modbustest		2)
			Aus / Mod I-10 UI / Val F-02 FL / Nr. Y-20 UL /		
	-		Sim x-xx DL / Sim R-46 ST / Diagnostik	-	
57	E	C4-UI	Buchse C4 unsigned int Überträgung: 1234 / 4321	-	
58	E	C4-UL	Buchse C4 unsigned long Ubertragung: 1234 / 4321	-	
59	E	04-FL	Buchse C4 float Ubertragung: 1234 / 4321	+	
60	E	C4-DB	Buchse C4 double Ubertragung: 1234 / 4321		
61	E	C4-MDAdr	Buchse C4 Modbus Adresse	+	
62	E	C4-Offs	Buchse C4 Modbus Registeroffset		
63	A	C4-Text	Ubertragungstext RMG-Bus		
65	A	RS_C5	Uberschrift serielle Datenschnittstelle C5		
66	Е	С5-Тур	Buchse C5 Typ: Aus / EMC-Master		

In diesem Menü können Testwerte über die Modbusschnittstelle übertragen werden. Der Rechner

verhält sich so, als ob durch eine entsprechende Anfrage ein Feld des Rechners angefragt würde und gibt dann den Wert für das entsprechende Feld permanent aus. Es können die Formate unsigned int, float, unsigned long, double, string sowie der Diagnostic-Befehl getestet werden. In dieser Version des

Der Betrieb der Frontschnittstelle wird zurzeit nicht unterstützt.

GC 9000-EMC sind die Formate double und string nicht verfügbar!

35

Manual EMC 500 · DE01 · 2008-02

1)

2)

ANALYSENRECHNER GC 9000

Auswahl Berechnung

K

direkt

Gas-Komp.

		Spalte K	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	MOD-EMC	Überschrift Modusspalte EMC		
2	Ε	EMC-Hs	EMC-Brennwertberechnung		
			Aus / Ein		
3	Ε	EMC-Ws	EMC-Wobbeindexberechnung		
			Aus / Ein		
4	Е	EMC-rn	EMC-Normdichteberechnung		
			Aus / Ein		
5	Е	EMC-dv	EMC-Dichteverhaeltnis		
			Aus / Ein		
6	Е	EMC-Hi	EMC-Heizwertberechnung		
			Aus / Ein		
7	Е	EMC-CO2	EMC-Kohlendioxid		
			Aus / Ein / Festwert		
8	E	EMC-N2	<u>EMC-Stickstoff</u>		
	_		Aus / Ein		
9	E	EMC-CH	EMC-Kohlenwasserstoffe		
			Aus / Ein		
11	E	Hs-Wert	EMC-Brennwert Start/Fehler-Bedingung		
	_		Vorgabewert / Letzt. Wert		
12	E	Ws-Wert	EMC-Wobbeindex Start/Fehler-Bedingung		
10	-		Vorgabewert / Letzt. Wert		
13	E	rn-wert	EMC-Normalchie Start/Fenier-Bedingung		
14	E	dy Mort	MC Diabtoursh Start (Cabler Dadingung		
14	E	av-wert	EMC-Dicitevent. Start/Femer-bedingung		
15	F	Hi_Wort	EMC Heizwert Stort / Eebler Pedingung		
15	-	III-Wert	Vorgabewert / Letzt Wert		
16	F	CO2-Wert	FMC-Kohlendiovid Start / Fehler-Bedingung		
10	-	002 Wert	Vorgabewert / Letzt Wert		
21	F	Hs-Dim	Finheit FMC-Brennwert		
2 .	-		kWh/m3 / kcal/m3 / MI/m3		
22	Е	Ws-Dim	Einheit EMC-Wobbeindex		
		-	kWh/m3 / kcal/m3 / MJ/m3		
23	Ε	Hi-Dim	Einheit EMC-Heizwert		
			kWh/m3 / kcal/m3 / MJ/m3		
24	Ε	CO2-Dim	Einheit Kohlendioxid / Mol%		
26	А	FHsL	Letzter gültiger EMC-Brennwert	s. K/21	
27	А	FWsL	Letzter gültiger EMC-Wobbeindex	s. K/22	
28	A	FrnL	Letzter gültiger EMC-Normdichte	kg/m3	
29	A	FdvL	Letzter gültiger EMC-Dichteverhaeltnis	3,	
30	A	FHil	Letzter gültiger FMC-Heizwert	s. K/23	
31	A	FCO2I	Letzter gültiger FMC-Kohlendioxid	%	

.....

Messwerte

.....

direkt

Brennwert

		Spalte M	Beschreibung der Koordinate	Einheit	Bemerkungen
1	Α	Ergebnis	Überschrift Ergebnisspalte		
2	Α	*Hs	berechneter EMC-Brennwert	s. K/21	
3	Α	*rho,n	berechneter EMC-Normdichte	kg/m3	1)
4	Α	Ws	berechneter EMC-Wobbeindex	s. K/22	,
5	Α	dv	berechneter EMC-Dichteverhaeltnis		
6	Α	Hi	berechneter EMC-Heizwert	s. K/23	
7	А	*CO2	Kohlendioxid	s. K/24	
8	Α	N2	Stickstoff	Mol%	
9	А	СН	Kohlenwasserstoffe	Mol%	
11	А	MZahl	Methanzahl		
12	В	P-Gas	EMC-Prüfgas		
			Prüfg. AUS / Prüfg. Hand / Prüfg. Auto		
13	Ε	PGasTo	Timeout Prüfgas	min	
14	Α	PHs	berechneter EMC-Brennwert Prüfgas	s. K/21	
15	А	PWs	berechneter EMC-Wobbeindex Prüfgas	s. K/22	
16	Α	Prho,n	berechneter EMC-Normdichte Prüfgas	kg/m3	
17	Α	Pdv	berechneter EMC-Dichteverhaeltnis Prüfgas		
18	Α	PHi	berechneter EMC-Heizwert Prüfgas	s. K/23	
19	Α	PCO2	Kohlendioxid Prüfgas	s. K/24	
20	А	PN2	Stickstoff Prüfgas	Mol%	
21	Α	PCH	Kohlenwasserstoffe Prüfgas	Mol%	
24	А	PMZahl	Methanzahl Prüfgas		
27	Α	HsA0a	aktueller A0 Wert	s. K/21	
28	Ε	Hsmin	unterer Alarmgrenzwert EMC-Brennwert	s. K/21	
29	Ε	Hsmax	oberer Alarmgrenzwert EMC-Brennwert	s. K/21	
30	В	Hs-vg	Ersatzwert EMC-Brennwert	s. K/21	
31	Ε	Hs-mf	Mittelungsfaktor EMC-Brennwert		
34	Α	WsA0a	aktueller A0 Wert	s. K/22	
35	Ε	Wsmin	unterer Alarmgrenzwert EMC-Wobbeindex	s. K/22	
36	Ε	Wsmax	oberer Alarmgrenzwert EMC-Wobbeindex	s. K/22	
37	В	Ws-vg	Ersatzwert EMC-Wobbeindex	s. K/22	
38	Ε	Ws-mf	Mittelungsfaktor EMC-Wobbeindex		
41	Α	rnA0a	aktueller A0 Wert	kg/m3	
42	Ε	rnmin	unterer Alarmgrenzwert EMC-Normdichte	kg/m3	
43	Ε	rnmax	oberer Alarmgrenzwert EMC-Normdichte	kg/m3	
44	В	rn-vg	Ersatzwert EMC-Normdichte	kg/m3	
45	Ε	rn-mf	Mittelungsfaktor EMC-Normdichte		
48	Α	dvA0a	aktueller A0 Wert		
49	Ε	dvmin	unterer Alarmgrenzwert EMC-Dichteverhältnis		
50	Ε	dvmax	oberer Alarmgrenzwert EMC- Dichteverhältnis		
51	В	dv-vg	Ersatzwert EMC- Dichteverhältnis		
52	Ε	dv-mf	Mittelungsfaktor EMC- Dichteverhältnis		
55	Α	HiA0a	aktueller A0 Wert	s. K/23	
56	Ε	Himin	unterer Alarmgrenzwert EMC-Heizwert	s. K/23	
57	Ε	Himax	oberer Alarmgrenzwert EMC-Heizwert	s. K/23	
58	В	Hi-vg	Ersatzwert EMC-Heizwert	s. K/23	
59	Ε	Hi-mf	Mittelungsfaktor EMC-Heizwert		
63	Α	CO2A0a	aktueller A0 Wert	s. K/24	
64	Ε	CO2min	unterer Alarmgrenzwert Kohlendioxid	s. K/24	
65	Ε	CO2max	oberer Alarmgrenzwert Kohlendioxid	s. K/24	
66	В	CO2-vg	Ersatzwert Kohlendioxid	s. K/24	
67	Ε	CO2-mf	Mittelungsfaktor Kohlendioxid		

.....

ANALYSENRECHNER GC 9000

69	Ε	N2min	unterer Alarmgrenzwert Stickstoff	Mol%
70	Ε	N2max	oberer Alarmgrenzwert Stickstoff	Mol%
71	В	N2-vg	Ersatzwert Stickstoff	Mol%
72	Ε	N2-mf	Mittelungsfaktor Stickstoff	
73	Ε	CHmin	unterer Alarmgrenzwert Kohlenwasserstoffe	Mol%
74	Ε	CHmax	oberer Alarmgrenzwert Kohlenwasserstoffe	Mol%
75	В	CH-vg	Ersatzwert Kohlenwasserstoffe	Mol%
76	Ε	CH-mf	Mittelungsfaktor Kohlenwasserstoffe	
77	Ε	MZ-min	unterer Alarmgrenzwert Methanzahl	
78	Ε	MZ-max	oberer Alarmgrenzwert Methanzahl	

38

1) Eichfähig im Modus EMC 500 (siehe Y25)

Manual EMC 500 · DE01 · 2008-02

DSfG Füllstandsregister

indirekt

Brennwert

.....

und 1 mal

		Spalto N	Roschroibung der Koordingto	Finhoit	Bomorkungon
				Enner	Demerkungen
	A	FUIIST.	Uberschrift Fullstandsanzeige		
2	A	diba			
3	A	ddib			
4	A	dica			
5	A				
0	A	djba			
/	A	djbb	Fullstandsanzeiger 'bis' djb		
8	A	dkba	Fullstandsanzeiger 'von' dkb		
9	A	dkbb	Fullstandsanzeiger 'bis' dkb		
10	A	dlba	Füllstandsanzeiger 'von' dlb		
11	A	dibb	Fullstandsanzeiger 'bis' dlb		
12	A	qiba	Füllstandsanzeiger 'von' qib		
13	Α	qibb	Füllstandsanzeiger 'bis' qib		
14	Α	qica	Füllstandsanzeiger 'von' dic		
15	Α	qicb	Füllstandsanzeiger 'bis' qic		
16	А	qida	Füllstandsanzeiger 'von' qid		
17	А	qidb	Füllstandsanzeiger 'bis' qid		
18	А	qiea	Füllstandsanzeiger 'von' qie		
19	А	qieb	Füllstandsanzeiger 'bis' qie		
20	А	qjba	Füllstandsanzeiger 'von' qjb		
21	А	qjbb	Füllstandsanzeiger 'bis' qjb		
22	А	qjca	Füllstandsanzeiger 'von' qjc		
23	А	qjcb	Füllstandsanzeiger 'bis' qjc		
24	А	qkaa	Füllstandsanzeiger 'von' qka		
25	А	qkab	Füllstandsanzeiger 'bis' qka		
26	А	qkba	Füllstandsanzeiger 'von' qkb		
27	А	qkbb	Füllstandsanzeiger 'bis' qkb		
28	А	qlaa	Füllstandsanzeiger 'von' qla		
29	А	qlab	Füllstandsanzeiger 'bis' qla		
30	А	qzica	Füllstandsanzeiger 'von' qzic		
31	А	qzicb	Füllstandsanzeiger 'bis' qzic		
32	А	qifa	Füllstandsanzeiger 'von' qif		
33	А	qifb	Füllstandsanzeiger 'bis' qif		
34	А	qjea	Füllstandsanzeiger 'von' qje		
35	А	qjeb	Füllstandsanzeiger 'bis' qje		
36	А	qjfa	Füllstandsanzeiger 'von' qif		
37	А	qjfb	Füllstandsanzeiger 'bis' qif		
38	А	qkca	Füllstandsanzeiger 'von' qkc		
39	А	qkcb	Füllstandsanzeiger 'bis' qkc		
42	Е	F-res	DSfG Füllstände Reset: Aus / Reset		1)
43	А	Polls	DSfG-Pollingzähler, wird bei jedem Polling inkrementiert		
44	А	Diag.Zw	Zählt DSfG-Diagnosereignisse		
45	А	Diagnos	DSfG-Diagnose		2)

51	В	KalSoll	Sollwert Kalibriergasaufschaltung DSfG
52	А	Kallst	Istwert Kalibriergasaufschaltung DSfG
53	В	PGasSoll	Sollwert Prüfgasaufschaltung DSfG
54	А	PGasIst	Istwert Prüfgasaufschaltung DSfG
55	В	QErrSoll	Sollwert Fehlerquittierung DSfG
56	А	QErrlst	Istwert Fehlerquittierung DSfG

- 1) Rücksetzen DSfG-Archive. Inhalt aller DSfG-Archive wird gelöscht. Die Füllstandsanzeiger der Archive werden auf 0 gesetzt.
- 2) Besondere DSfG-Fehlerereignisse werden hier vermerkt.

Infos (Codes 100...199)

Analyse des DSfG-Verkehrs mit anderen DSfG-Geräten. Die gemeldeten Codes betreffen syntaktisch falsches Verhalten anderer Geräte. Sind nicht mit einer Warnmeldung am EMC verbunden.

Warnlevel 1 (Codes 200...299) (leicht)

Sind Meldungen, die auf falsche Parametrierung des eigenen DSfG-Gerätes hinweisen. Warnlevel 2 (Codes 300...399) (schwer)

Bedrohliche Situationen an denen das eigene DSfG-Gerät schuld sein könnte (aber nicht sein muss).

Warnlevel 3 (Codes 400...499) (GAU)

Heftigst übles, was den Betrieb der DSfG-Software in Frage stellt.

Genaue Bedeutung der Codes erfolgt in getrennter Auflistung. Da die Warnmeldungen Level 1..3 auf Ereignisse im DSfG-Verkehr ausgelöst werden, besteht zur Vermeidung von ständig kommenden und gehenden Warnungen folgendes Verhalten:

Ereignis detektiert -> Warnmeldung kommt. Kommt innerhalb von 180 Sekunden kein neues Ereignis hinzu wird die Warnmeldung mit Ablauf der Zeit gelöscht -> Warnmeldung geht. Eine DSfG-Warnmeldung steht also immer mindestens 180 Sekunden an.

Druckersteuerung

.....

direkt

Drucken

		Spalte O	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	MODUS-TT	Überschrift Druckspalte EMC		
2	А	Handp.	Überschrift Handprotokoll EMC		
3	А	Kanalp.	Überschrift Kanalprotokoll EMC		
6	В	LPT-1	EMC Druckmode 1		
			Manuell / Automatik		
7	В	LPT-Dat.	EMC Datenprotokoll Hs, Ws, rn, dv, Hi, CO2		
			Druck AUS / Mittelwerte / 15Min-Werte / Stundenwerte		
8	В	LPT-Kal.	EMC Kalibrierprotokoll Hs, Ws, rn, dv, Hi		
			Druck AUS / Druck EIN		
9	В	LPT-Rev.	EMC Revisionsprot. Hs, Ws, rn, dv, Hi, CO2		
			Druck AUS / Druck EIN		
10	В	LPT-EMC	EMC Datenprotokoll Sensorik		
			Druck AUS / Druck EIN		
11	В	AutoRep	EMC-Wiederholrate bei Automatikausdruck	min	
12	В	Rev-Rep	EMC-Wiederholrate bei Revisionsausdruck	min	
13	А	L-P	Zeitpunkt der letzten EMC-Ausdrucks		

ANALYSENRECHNER GC 9000

Datum

direkt

Datum

		Spalte P	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	Datum	Überschrift Datumsanzeige		
2	В	Datum:	Datumsanzeige		
3	В	Tag:	Wochentag		

.....

Uhrzeit

direkt

Uhrzeit

		Spalte Q	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	Uhrzeit	Überschrift Uhrzeit-Anzeige		
2	В	Uhrzeit:	Zeitanzeige		
5	А	UnixS	Unix Sekunden seit 01.01.1970 00:00	S	
6	А	UnixZ	Datum und Uhrzeit der (Unixzeit)		

Fehler

.....

direkt

Alarm

		Spalte R	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	FEHLER	Überschrift Fehlerspalte		
2	А	Err.	Fehlertext		
3	А	FZeit	Fehlerzeit		
4	А	FDatum	Fehlerdatum		
5	А	Reset	Zeitpunkt Fehler löschen		
31	А	3200	Messwerk-Fehler, Bitleiste 1		
32	А	3201	Messwerk-Fehler, Bitleiste 2		
33	А	3202	Messwerk-Fehler, Bitleiste 3		
34	А	3203	Messwerk-Fehler, Bitleiste 4		
41	А	Warn-fl	Warnflag		
42	А	Alarm-fl	Alarmflag		
45	А	E-idx	Index Ereignisarchiv		
46	А	E-Archiv	Ereignisarchiv		

Manual EMC 500 · DE01 · 2008-02

ANALYSENRECHNER GC 9000

DSfG

indirekt

Alarm

und 1 mal

rechts

.....

	_
11	

		Spalte S	balte S Beschreibung der Koordinate		Bemerkungen
1	А	DSFG1	Überschrift DSfG Schnittstelle 1		
2	Е	EMC-Adr	meine DSfG-Adresse		1)
3	Ε	EMC-Pst	mein DSfG-Preset		2)
5	В	LevMod	DSfG Warnlevel aktivieren		
			Aus / Ein	lus / Ein	
6	В	Meßort	Messort		
7	А	Fa.	Herstellername		
8	А	DSfG-ID	ID-Schnittstellenkarte		
9	А	DSfG-V.	Softwareversionsnummer der DSfG-Firmware		
10	Е	SynZyk	Zyklus für Zeitsynchronisation (nur Leitst.)	min	3)
11	Е	Wartez.	DSfG- max. Wartezeit FRAGE an PGC und ANTWORT	s	
12	Е	Instanz	Einstellung der Instanz		
			EMC / PGC		-
13	А	Instanz	eigener Instanzentyp		-
14	А	L-Ereig	letztes Ereignis		4)
15	А	TL	Zeitpunkt letztes Ereignis		5)
16	А	lv-Zz	letzte Verstellung der Zeitzone		6)
17	A	Zeitzne	Zeitzone M=MEZ, S=MESZ		7)
18	E	GC-Adr.	DSfG-Adresse des GC's		8)
19	E	GC-Pst.	DSfG-Preset des GC's		9)
20	E	GC-TO.	GC-Timeout	min	10)
21	E	MAX-CNT	Max. Zyklusanzahl des GC bis Vergleich		
22	Α	GC-Zt	Zeitstempel GC-Daten via DSfG-Schnittstelle		11)
23	Α	GC-H2	H2 aus GC via DSfG-Schnittstelle	Mol%	
24	А	GC-N2	N2 aus GC via DSfG-Schnittstelle	Mol%	
25	A	GC-dv	Dichteverh. aus GC via DSfG-Schnittstelle		
26	А	GC-CO2	CO2 aus GC via DSfG-Schnittstelle	Mol%	
27	А	GC-rn	Normdichte aus GC via DSfG-Schnittstelle	kg/m3	
28	А	GC-Hs	Brennwert aus GC via DSfG-Schnittstelle	kWh/m3	12)
29	А	GC-Bits	Bitleiste des GC's	hex	13)
31	А	P1:	Pollingliste 115 (nur Leitstelle)		14)
32	А	P2:	Pollingliste 1630 (nur Leitstelle)		15)
34	А	MIW	(null)		16)
35	А	GC-MWCO2	Mittelwert aus GC Kohlendioxid		-
36	А	GC-MWRN	Mittelwert aus GC Normdichte		-
37	А	GC-MWHS	Mittelwert aus GC Brennwert		-
38	А	GC-CNT	Zaehler fuer GC-Mittelwertbildung		-
39	А	EMC-MWHS	Mittelwert aus EMC Brennwert		-
40	А	EMC-MWRN	Mittelwert aus EMC Normdichte		
41	А	EMC-MWCO	Mittelwert aus EMC Kohlendioxid		
42	А	EMC-CNT	Zaehler fuer EMC-Mittelwertbildung		-
43	А	EMC-Bits	Bitleiste des EMC hex		-
45	Α	L-Ereig	letztes Ereignis		
46	Α	T-LE	Zeitpunkt letztes Ereignis		
51	А	GF1	Gütefaktor-1		
52	E	PGF1	Parameter Gütefaktor-1		
53	E	MIN-GF1	unterer Alarmgrenzwert Gütefaktor-1		
54	E	MAX-GF1	oberer Alarmgrenzwert Gütefaktor-1		1

Manual EMC 500 · DE01 · 2008-02

55	А	GF2	Gütefaktor-2		
56	Ε	PGF2	Parameter Gütefaktor-2	arameter Gütefaktor-2	
57	Е	MIN-GF2	-GF2 unterer Alarmgrenzwert Gütefaktor-2		
58	Ε	MAX-GF2	oberer Alarmgrenzwert Gütefaktor-2		
59	А	GF3	Gütefaktor-3		
60	Ε	PGF3	Parameter Gütefaktor-3		
61	Ε	MIN-GF3	unterer Alarmgrenzwert Gütefaktor-3		
62	Ε	MAX-GF3	oberer Alarmgrenzwert Gütefaktor-3		

- Adresse des EMC im DSfG-Kreis. Gültige Werte: 1...30 für DSfG-Slave, 31 für ich bin Leitstelle. Innerhalb eines DSfG-Kreises müssen alle Geräte eine unterschiedliche Adresse haben. Achtung: Wer DSfG-Adressen im laufenden Betrieb umändert handelt frevelhaft und hat mit Kommunikationsfehlern auf dem DSfG-Bus zurechnen die nicht nur auf das umparametrierte Gerät beschränkt bleiben.
- 2) Eichstempel eichamtlich gesicherter Daten. Gültige Werte: 0...65535. Die Daten weisen sich damit als zu genau diesem EMC gehörend aus.
- 3) Nur wenn EMC als DSfG-Leitstelle aktiv. (siehe EMC-Adr). Bestimmt den Zyklus für Zeitsynchronisationstelegramme in Minuten.

0: aus

1-15: Zyklus in Minuten

15: PTB-Mindestforderung (4 mal pro Stunde)

Das Zeitsynchronisationstelegramm wird jeweils zur Sekunde 30 ausgegeben.

- Ereignisnummer DSfG-Archiv zu Standardabfrage 5 gemäß der DSfG-Fehlerliste. Siehe DVGW-Gasinformation Nr.7 9/97 Seite 36ff. Eine positive Zahl steht für 'Ereignis kommt', eine negative für 'Ereignis geht'.
- 5) Zeitstempel zu L-Ereig.
- 6) Es wird der Zeitpunkt beim Wechsel der Zeitzone festgehalten.
- 7) Es können folgende Werte erscheinen.
 - S: jetzt ist Sommerzeit

s: jetzt ist letzte Stunde von Sommerzeit

M: jetzt ist Winterzeit

m: jetzt ist letzte Stunde von Winterzeit

Leer: seit Neustart noch keine Zeitsynchronisation erfolgt oder Ausfall DCF-Signal.

- 8) Adresse des als Datenquelle genutzten PGC's. Gültige Werte: 1...31. Adresse des PGC's 0 für kein PGC als Datenquelle.
- 9) Eichstempel des als Datenquelle genutzten PGC's. Gültige Werte: 0...65535
- 10) Zeitraum in welchem der als Datenquelle genutzte PGC mindestens einmal Analysendaten gesendet haben muss. Ansonsten erfolgt die Fehlermeldung "GC-Timeout".
- Zeitstempel des letzten PGC-Telegramms. Nach Neustart DSfG-Kommunikation (auch Neustart EMC) wird der Zeitstempel auf die Neustartzeit gesetzt und dann mit dem nächsten eingelaufenen Telegramm aktualisiert.
- 12) Brennwert wie er von einem via DSfG angeschlossenen PGC gemeldet wird. Hochstartverhalten Nach Neustart DSfG-Kommunikation (auch Neustart EMC) wird der im EMC programmierte Ersatzwert HO_VOR angezeigt und mit dem ersten eingelaufenen Telegramm ersetzt. In Abhängigkeit von GC_START wird die Kommunikation als gut (d.h. ohne Fehlermeldung PGC-Timeout) oder als schlecht (d.h. mit Fehlermeldung PGC-Timeout) gestartet.

ANALYSENRECHNER GC 9000

- 13) Bitcodierter Status wie ihn der PGC via DSfG meldet.
 - Gesetztes Bit bedeutet:
 - 0001 Bit 0: Alarmsammelmeldung
 - 0008 Bit 3: Störung Messwert RHON
 - 0200 Bit 9: Revisionsvermerk
 - 0400 Bit 10: Parameter geändert
 - 0800 Bit 11: Störung Messwert HON
 - 1000 Bit 12: Störung Messwert CO2
- Nach Neustart DSfG-Kommunikation (auch Neustart EMC) wird die Bitleiste mit 0000 (alle Bits aus) vorbesetzt und mit dem ersten eingelaufenen Telegramm ersetzt.
- 14) Nur wenn EMC als DSfG-Leitstelle aktiv. (siehe EMC-Adr) Zeigt den Pollingzustand der ersten 15 DSfG-Geräte (A-O). Es wird ein 15 Zeichen langer String angezeigt.
 - A-O: Adressen der erfolgreich gepollten DSfG-Geräte.
 - 1-4: Gerät nahm 'sooft mal' nacheinander nicht am Polling teil.
 - -: Gerät ist nicht im DSfG-Kreis.
 - ?: Smartpolling.
 - *: Generalpolling.
 - Beispiel: "AB?-F2------"

Die Geräte A,B und F sind erfolgreich im DSfG-Kreis. Gerät C ist zurzeit unsicher (d.h. wird gerade auf existent getestet), Gerät G war da hat sich aber 2 mal hintereinander nicht gemeldet. Die Geräte D,H,I,J,K,L,M,N und O sind nicht im DSfG-Kreis.

- Es werden zwei verschieden Pollingstrategien gefahren.
- 1. Klassisches Generalpolling. Alle 2 Minuten, nach Neustart und nach schweren Kommunikationsfehlern.
- Smartpolling. Umlaufend wird eine der unsicheren DSfG-Adressen auf Existenz gepr
 üft, dies f
 ührt zu kontinuierlichem Kommunikationsfluss und schnellerem Erkennen neu in den DSfG-Kreis gelangter Ger
 äte.

Klassisches Generalpolling ist erkennbar am Füllen des Strings mit *, Smartpolling erkennt man am umlaufenden Fragezeichen.

- 15) Selbiges wie POLL_LIST1 nur DSfG-Geräte ab Adresse P. Beispiel: "PQRST-------"
- 16) / Okay / Start MIW / EMC läuft / GC läuft / GC Alarm / GC Warnung / GC Referenzgas / GC Kalibrierung / EMC Alarm / EMC Warnung / EMC Referenzgas / EMC Kalibrierung / GC Antw. falsch / GC Timeout / GC Antwort fehlt

EMC-Sensor 1

.....

direkt

Eingang

		Spalte T	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	S1-EMC	Überschrift EMC-Sensor 1		
2	А	S1	EMC-Sensor 1	mV	
3	А	S1-in	Eingangswert EMC-Sensor 1	mV	
4	А	S1-Oa	Aktueller Offset Sensor 1	mV	
7	Е	S1min	unterer Alarmgrenzwert EMC-Sensor 1	mV	
8	Ε	S1max	oberer Alarmgrenzwert EMC-Sensor 1	mV	
14	Ε	S1-mf	Mittelungsfaktor EMC-Sensor 1		
18	Е	S1-Geb	Modus EMC-Sensor 1		
			EMC		
21	Е	\$1D1	Korrekturfaktor Differenzdruck EMC-Sensor 1	Korrekturfaktor Differenzdruck EMC-Sensor 1	
22	Е	\$1G1	Korrekturfaktor Druck EMC-Sensor 1		
23	Е	S1K1	Korrekturfaktor Temperatur EMC-Sensor 1		
24	Ε	S1-Soll	Sollwert Kalibriergas EMC-Sensor 1	mV	
25	Ε	S1-Tol	Maximale Abweichung vom Sollwert EMC-Sensor 1	mV	
26	Ε	S1-vO	Setzwert Offset EMC-Sensor 1	mV	
29	А	Off-G1	Offset Sensor 1 bei Grundkalibrierung mV		
30	А	Off-D1	Differenz Sensor 1 zur Grundkalibrierung	%	
36	А	S1-1112	Aus EMC gelesener Messwert Sensor 1		
37	А	S1-1012	Aus EMC gelesener Analogwert Sensor 1		

Manual EMC 500 · DE01 · 2008-02

ANALYSENRECHNER GC 9000

EMC-Sensor 2

.....

indirekt

48

Eingang

rechts

und 1 mal

		Spalte U	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	S2-EMC	Überschrift EMC-Sensor 2		
2	А	S2	EMC-Sensor 2	mV	
3	А	S2-in	Eingangswert EMC-Sensor 2	mV	
4	А	S2-Oa	Aktueller Offset Sensor 2	mV	
7	Ε	S2min	unterer Alarmgrenzwert EMC-Sensor 2	mV	
8	Ε	S2max	oberer Alarmgrenzwert EMC-Sensor 2	mV	
14	Ε	S2-mf	Mittelungsfaktor EMC-Sensor 2		
18	Е	S2-Geb	Modus EMC-Sensor 2		
			EMC		
21	Е	S2D1	Korrekturfaktor Differenzdruck EMC-Sensor 2		
22	Ε	S2G1	Korrekturfaktor Druck EMC-Sensor 2		
23	Ε	S2K1	Korrekturfaktor Temperatur EMC-Sensor 2		
24	Ε	S2-Soll	Sollwert Kalibriergas EMC-Sensor 2	mV	
25	Ε	S2-Tol	Maximale Abweichung vom Sollwert EMC-Sensor 2	mV	
26	Ε	S2-vO	Setzwert Offset EMC-Sensor 2	mV	
29	А	Off-G2	ff-G2 Offset Sensor 2 bei Grundkalibrierung mV		
30	А	Off-D2	Differenz Sensor 2 zur Grundkalibrierung	%	
36	А	S2-1114	Aus EMC gelesener Messwert Sensor 2		
37	А	S2-1014	Aus EMC gelesener Analogwert Sensor 2		

EMC-Druck

indirekt

Eingang

.....

und 2 mal

rechts

		Spalte V	Beschreibung der Koordinate	Einheit	Bemerkungen	
1	А	P1-EMC	Überschrift EMC-Druck 1			
2	А	P1	EMC-Druck 1 mbar			
3	А	P1-in	Eingangswert EMC-Druck 1	mA		
4	А	CO2	EMC-CO2	Mol%		
5	А	CO2-in	Eingangswert EMC-CO2	mA		
6	А	CO2-Oa	Aktueller Offset CO2	%		
7	Е	P1min	unterer Alarmgrenzwert EMC-Druck 1	mbar		
8	Е	P1max	oberer Alarmgrenzwert EMC-Druck 1	mbar		
9	Е	P1-vg	Ersatzwert EMC-Druck 1	mbar		
11	Ε	P1-mf	Mittelungsfaktor EMC-Druck 1			
12	Е	P1-Geb	Modus EMC-Druck 1			
			EMC			
13	Е	р1-К1	Korrekturfaktor Temperatur Druck 1			
14	Е	CO2K1	Korrekturfaktor Temperatur CO2			
15	Е	CO2G1	Korrekturfaktor Druck CO2			
17	Е	CO2-Tol	Maximale Abweichung vom Sollwert Kohlend. CO2	%		
18	Е	CO2-vO	Setzwert Offset EMC-Kohlendioxid CO2	%		
19	Ε	dp-soll	MinGrenze Differenzdruck			
20	Ε	dp-abw	MaxGrenze Differenzdruck			
32	Ε	p2-min	Abschaltgrenze Druck 2			
33	Е	CO2OP	Fester Kohlendioxid-Offset	%		
35	А	CO2-1100	Aus EMC gelesener Messwert Kohlendioxid CO2			
36	А	CO2-1000	Aus EMC gelesener Analogwert Kohlendioxid CO2			
37	А	p1-1102	Aus EMC gelesener Messwert Ausgangsdruck P1			
38	А	p1-1002	Aus EMC gelesener Analogwert Ausgangsdruck P1			
39	А	dp-1104	Aus EMC gelesener Messwert DiffDruck DP			
40	A	dp-1004	Aus EMC gelesener Analogwert DiffDruck DP			

ANALYSENRECHNER GC 9000

EMC-Gehäusetemperatur

indirekt

Eingang

und 3 mal

rechts

.....

		Spalte W	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	tG-EMC	Überschrift EMC-Gehäusetemperatur		
2	А	tG	EMC-Gehäusetemperatur	°C	
3	А	tG-in	Eingangswert EMC-Gehäusetemperatur	ohm	
7	Ε	tGmin	unterer Alarmgrenzwert EMC-Gehäusetemperatur	°C	
8	Ε	tGmax	oberer Alarmgrenzwert EMC-Gehäusetemperatur °C		
10	Ε	tG-vg	Ersatzwert EMC-Gehäusetemperatur	°C	
14	Ε	tG-mf	Mittelungsfaktor EMC-Gehäusetemperatur	littelungsfaktor EMC-Gehäusetemperatur	
18	Ε	tG-Geb	b Modus EMC-Gehäusetemperatur		
			EMC		
22	Ε	tG-Soll	Solltemperatur EMC-Gehäusetemperatur	°C	
36	А	tG-1106	Aus EMC gelesener Messwert Gehäusetemp. TG		
37	А	tG-1006	Aus EMC gelesener Analogwert Gehäusetemp. TG		

EMC-Blocktemperatur

indirekt

Eingang

und 4 mal

rechts

		Spalte X	Beschreibung der Koordinate	Einheit	Bemerkungen
1	А	tB-EMC	Überschrift EMC-Blocktemperatur		
2	А	tB	MC-Blocktemperatur °C		
3	А	tB-in	ingangswert EMC-Blocktemperatur ohm		
7	Е	tBmin	unterer Alarmgrenzwert EMC-Blocktemperatur	°C	
8	Ε	tBmax	oberer Alarmgrenzwert EMC-Blocktemperatur	°C	
10	Ε	tB-vg	Ersatzwert EMC-Blocktemperatur °C		
14	Е	E tB-mf Mittelungsfaktor EMC-Blocktemperatur			
21	Е	tB-Start	B-Start Starttemp. Zielregelung EMC-Blocktemperatur °C		
22	Е	tB-Soll	Solltemperatur EMC-Blocktemperatur	°C	
23	Е	tB-Hyst	lyst Hysteresetemperatur EMC-Blocktemperatur °C		
24	Ε	tB-Smin Min. Abw. zur Solltemp. EMC-Blocktemperatur °C			
25	Ε	tB-Smax	Max. Abw. zur Solltemp. EMC-Blocktemperatur	°C	
26	Ε	tB-SZyk	Startzyklen EMC-Blocktemperatur		
27	Е	tB-Zeit1	Startzeit EMC-Blocktemperatur	min	1)
			Zulässige Werte: zwischen ≥2 und ≤99 Minuten		
28	Ε	TB-Zeit2	Startzeit 2. Kalibrierung EMC-Blocktemp.	min	
36	А	tB-1108	Aus EMC gelesener Messwert Blocktemperatur TB		
37	А	tB-1008	Aus EMC gelesener Analogwert Blocktemp. TB		

1) Die geänderte Einstellung wird erst nach einem Neustart des Rechners übernommen.

Versionsparameter

direkt

Maxwerte

		Snalte V	Beschreibung der Koordinate	Finhoit	Bomorkungon		
-	٨			Linnen	Demerkungen		
1	A	EMC9000					
2	A	RIVIG	erschrift Hersteller				
3	A	ISTS I	Testwert Sensor 1	stwert Sensor 1			
4	A	ChtS I					
5	E	Code	Eingabe Benutzercode		1)		
6	A	Btr.Std	Betriebsstundenzahler	h			
/	В	Baujahr	Baujahr				
8	В	Inbtr.	Inbetriebnahmezeitpunkt				
9	В	Anzeige	Anzeigelevel EMC: Level 1 / Level 2 / Level 3 / Level 4				
10	E	SetCO2	lestwert CO2				
11	E	SetP1	Testwert Ausgangsdruck				
12	Е	Setdp	Testwert Differenzdruck				
13	Е	SetTR	Testwert Raumtemperatur				
14	Ε	SetTB	Testwert Blocktemperatur				
15	Ε	SetS1	Testwert Sensor 1				
16	Ε	SetS2	Testwert Sensor 2				
18	А	ERZ-PS	Prüfsumme ERZ				
19	А	Ver-ERZ	Softwareversion ERZ				
20	Ε	ERZ-Nr.	Seriennummer ERZ				
21	Е	Reset	Reset EMC				
			Aus / Offset-reset / A0-Setzen / EMC-Default / Stundenarchiv /				
			Tagesarchiv / Monatsarchiv / Minutenarchiv / Ereigreset				
22	А	EMC-PS	Prüfsumme EMC				
23	А	Ver-EMC	Softwareversion EMC				
24	А	Speicher	Speicherversion EMC				
25	Ε	Luftmod	Gasart-Modus: EMC 500 / EMC 500-L		2)		
27	А	Lamp.O	Lampentest oben (in oberer Displayzeile alle Segmente an)				
28	А	Lamp.U	Lampentest unten (In unterer Displayzeile alle Segmente an)				
29	Ε	F-Nr.	GC-9000-EMC Nr. (gleich mit Feld Y-30!)		3)		
30	А	EMC-Nr.	EMC-Nr. (muss gleich mit Feld Y-29 sein)		3)		
31	А	ST-FR	Status Front-Schnittstelle				
32	А	ST-C1	Status Zeichenanzahl C1-Schnittstelle				
	А						
36	А	ST-C5	Status Zeichenanzahl C5-Schnittstelle				
37	А	TR-FR	Transmit/Receive Zeichenanzahl Front				
38	А	TR-C1	Transmit/Receive Zeichenanzahl C1				
	А						
42	А	TR-C5	Transmit/Receive Zeichenanzahl C5				
43	Ε	Test	Test: Aus / Statisch EIN / Rampe EIN	Test: Aus / Statisch EIN / Rampe EIN			
45	А	User-S.	Benutzerschalterstellung				
46	А	Eich-S.	Eichschalterstellung				
55	А	RL	Verfügbarer Speicher DSfG				

Freischaltung der Benutzersicherung mittels einer 8-stelligen Zahl. Die Zahl kann nur bei geöffnetem Eichschalter eingesehen oder geändert werden. Für natürliche Erdgase: EMC 500 (eichamtlich Brennwert, Normdichte und CO₂) 1)

2) Für mit Luft konditionierte Erdgase: EMC 500-L (eichamtlich Brennwert und CO2; Normdichte nach Sonderprüfung zur K-Zahl-Berechnung) Wenn die Werte in Y-29 und Y-30 verschieden sind, ist keine Messung möglich!

3)

Anhang

A Blockschaltbild GC 9000

B Technische Daten

Analysenrechner

Digitaleingänge:	Statussignale, passiver Kontaktgeber (Relais bzw. offener Kollektor) Belastung mit 5 Volt 20 mA
Ausgänge Analogausgänge:	Auflösung 14 Bit, Genauigkeit ± 1 Bit, Bürde 800 Ohm galvanische Trennung als Steckmodul für jeden Ausgang Ausgänge 1 bis 4 optional bestückbar
Digitalausgänge:	Grenzkontakte offener Kollektor galvanisch getrennt, 24 Volt 100 mA Alarm / Warnung Relaiskontakte (Ruhestromprinzip) max. 24 Volt 100 mA
Schnittstellen Frontplatte:	RS 232 C, keine Hardware-Handshake-Leitungen Übertragungsgeschwindigkeiten von 4800 bis 9600 Bd 1 Startbit, 1 Stopbit, 8-Bit-Daten, kein Parity 9-poliger D-Sub-Stecker Mit Kurzschluss-Sicherung, Varistor und Transienten-Absorber (TAZ - Diode).
Geräterückwand:	5 mal RS 232 C (C1 und C2), keine Hardware-Handshake-Leitungen Schnittstelle C1 RS 232 Drucker Schnittstelle C2 RS 485 Modbus-Slave oder DSfG Schnittstelle C3 RS 232 Modbus-Slave Schnittstelle C4 RS 232 oder 485 Modbus-Slave Schnittstelle C5 RS 232 für EMC als Modbus-Master Übertragungsgeschwindigkeiten von 1200 bis 38400 Bd 1 Startbit, 1 Stopbit, 8-Bit-Daten, kein Parity, 9-poliger D-SubStecker Mit Kurzschluss-Sicherung, Varistor und Transienten-Absorber (TAZ - Diode).
CPU CPU 1:	80C537 / 20 MHz
Speicherbereich:	a) Eichamtliche Daten: nichtflüchtiger Speicher C-MOS, 2 kByte b) Benutzerdaten: nichtflüchtiger Speicher C-MOS, 2 kByte c) Programmspeicher: EPROM 64 k / 128 k Byte
CPU 2:	80C186 / 10 MHz Datenspeicher: 64 k / 256 k Byte + 2 k Byte DPRAM Programmspeicher: 64 k / 786 kB EPROM + 8 kB EEPROM

Netzteil

Standardversion:	Schaltnetzteil voneinander g 24 Volt DC	mit 40 galvanis 21 V k	kHz Takt. Alle Seku sch getrennt. Ladeei bis 27 V	ndärspannungen sind nrichtung für Notstrom-Akku.
Sonderversion:	230 Volt AC	-10%	+6%	
Leistungsaufnahme:	ca. 31 W			
Kassettengerät				
Format:	Höhe 3 HE		Breite 213 mm	Tiefe 295 mm
Gewicht ohne Akku:	ca. 3,2 kg			

.....

<u>Messwerk</u>

Arbeitsbereiche (Erdgas)

Brennwert: Normdichte: CO ₂ -Gehalt: Wobbezahl: Heizwert:	8,4 - 13,1 kWh/m ³ 0,711 - 0,970 kg/m ³ 0 - 5 mol% / 0 - 20 mol% 8 - 16 kWh/m ³ 7 - 14 kWh/m ³
Meßgenauigkeit:	±0,5% v. Messwert für Normdichte und Brennwert ±0,5 mol% (absolut) für CO ₂ -Gehalt Bei mit Luft (max. 20%) konditionierten Erdgasen kann der Messfehler für die Normdichte ±1% erreichen.
Ansprechzeiten:	T50: < 30 s T90: < 60 s
Umgebungstemperatur:	-20°C bis +55°C
Spannungsversorgung:	24 V/DC oder 230 V/AC oder 115 V/AC
Leistungsaufnahme:	100 W
Abmessungen:	B x H x T = 475 x 720 x 340 mm
Schutzart:	IP 54 (Ex-Ausführung) IP 43 (Non-Ex)
Eingangsdruckbereich:	0,5-3,0 bar
Gasverbrauch:	max. 15 Nℓ/h

.....

.

C Anschlussplan GC 9000

56

Manual EMC 500 · DE01 · 2008-02

D Fehlerliste

Alarmmeldungen

	Kennzeichnung					
	A = Alarm		Fehlerkurztext			
	W = Warnung	Fehlernummer	Erläuterung wie im Display			
×						
А	02-0	EMC CO2 Kalibr.	EMC-Kohlendioxid-Kalibrierung			
А	02-0	EMC dv Kalibr.	EMC-DichteverhKalibrierung			
А	02-1	dv max Bereich	max Bereich überschritten Dichteverh.			
А	02-2	dv min Bereich	min Bereich unterschritten Dichteverh.			
А	03-1	N2 max Grenze	max Grenze überschritten N2			
А	03-2	N2 min Grenze	min Grenze unterschritten N2			
А	03-3	CH max Grenze	max Grenze überschritten CH			
А	03-4	CH min Grenze	min Grenze unterschritten CH			
А	13-0	EMC Hs Kalibr.	EMC-Brennwertkalibrierung			
А	13-1	Hs max Bereich	max Bereich überschritten Brennwert			
А	13-2	Hs min Bereich	min Bereich unterschritten Brennwert			
А	14-0	EMC Hi Kalibr.	EMC-Heizwertkalibrierung			
А	14-1	Hi max Bereich	max Bereich überschritten Heizwert			
А	14-2	Hi min Bereich	min Bereich unterschritten Heizwert			
А	15-0	EMC rn Kalibr.	EMC-Normdichtekalibrierung			
А	15-1	rn max Bereich	max Bereich überschritten Normdichte			
А	15-2	rn min Bereich	min Bereich unterschritten Normdichte			
А	16-0	EMC Ws Kalibr.	EMC-Wobbeindexkalibrierung			
А	16-1	Ws max Bereich	max Bereich überschritten Wobbeindex			
А	16-2	Ws min Bereich	min Bereich unterschritten Wobbeindex			
А	17-0	EMC S1 Ausfall	EMC-Sensor 1			
А	17-1	EMC S1 max Ber.	max Bereich überschritten Sensor 1			
А	17-2	EMC S1 min Ber.	min Bereich unterschritten Sensor 1			
А	18-0	EMC S2 Ausfall	EMC-Sensor 2			
А	18-1	EMC S2 max Ber.	max Bereich überschritten Sensor 2			
А	18-2	EMC S2 min Ber.	min Bereich unterschritten Sensor 2			
А	19-0	EMC P1 Ausfall	EMC-Druck 1			
А	19-1	EMC P1 max Ber.	max Bereich überschritten Druck 1			
А	19-2	EMC P1 min Ber.	min Bereich unterschritten Druck 1			
А	20-0	EMC TG Ausfall	EMC-Gehäusetemperatur			
А	20-1	EMC TG max Ber.	max Bereich überschritten Gehäusetemperatur			
А	20-2	EMC TG min Ber.	min Bereich unterschritten Gehäusetemperatur			
А	21-0	EMC TB Ausfall	EMC-Blocktemperatur			
А	21-1	EMC TB max Ber.	max Bereich überschritten Blocktemperatur			
А	21-2	EMC TB min Ber.	min Bereich unterschritten Blocktemperatur			
А	22-0	EMC KalibGas	Kalibriergasfehler			

.....

ANHANG

А	22-1	EMC Zeiteinst.	Kalibrierzeiten falsch eingestellt
А	22-2	EMC AusglZeit	Ausgleichszeit falsch eingestellt
А	22-3	EMC Gasalram	Gasalarm ueber Kontakteingang
А	22-4	Grenze Gasfluss	Gasdurchfluss ausserhalb Bereich
А	23-0	CO2 Hardware	EMC-CO ₂ -Messung
А	23-1	CO2 max Bereich	max Bereich überschritten Kohlendioxid
А	23-2	CO2 min Bereich	min Bereich unterschritten Kohlendioxid
А	28-0	EMC Y30 zu Y29?	Zuordnung GC-9000-EMC zu EMC-500 falsch
А	29-0	Gasfluss Hardw.	Gasdurchfluss Ausfall
А	50-0	Netzausfall	Netzausfall
А	50-2	RAM-Fehler	Fehler bei der Prüfung des RAM
А	50-4	Watchdog	Programmlaufzeit überschritten
А	50-6	CPU1 zu CPU2	Übertragungsfehler im DP-RAM
А	56-3	Uhr Hardware	Echtzeituhr gestorben
А	56-5	Tasten Hardware	Tasten gestorben
А	56-7	RAM Hardware	RAM gestorben
А	57-0	Transferverlust	Transferverlust
А	57-1	RAM-Version	RAM-Version
А	57-2	Zeitbasis	Zeitbasis
А	59-0	EMC500 Fehler	Fehler EMC-500 Allgemein
А	59-1	EMC500 AD-Fehl.	Fehler A/D Messungen EMC 500
А	59-2	EMC500 IO-Fehl.	Fehler I/O Signale EMC 500
А	59-3	EMC500 MW-Fehl.	Fehler Messwerte EMC 500
А	76-5	Modb.Ausfall C5	Modbus Ausfall C5

Warnmeldungen

W	12-1	Methanz. Grenze	Methanzahl Grenzwerte überschritten
W	17-5	EMC S1 Offset	Sensor 1 Hysteresegrenze Offset überschritten
W	18-5	EMC S2 Offset	Sensor 2 Hysteresegrenze Offset überschritten
W	21-5	EMC TB Hyster.	Blocktemperatur Hysteresegrenze überschritten
W	23-5	CO2 Offset	Kohlendioxid Hysteresegrenze Offset überschr.
W	24-0	11-Aus Max.	Strom 1 Ausgang > max
W	24-1	I1-Aus Min.	Strom 1 Ausgang < min
W	25-0	I2-Aus Max.	Strom 2 Ausgang > max
W	25-1	I2-Aus Min.	Strom 2 Ausgang < min -
W	26-0	I3-Aus Max.	Strom 3 Ausgang > max
W	26-1	I3-Aus Min.	Strom 3 Ausgang < min
W	27-0	I4-Aus Max.	Strom 4 Ausgang > max
W	27-1	I4-Aus Min.	Strom 4 Ausgang < min
W	35-1	Schnittst. C1	Schnittstelle C1 gestört
W	35-2	Schnittst. C2	Schnittstelle C2 gestört
W	35-3	Schnittst. C3	Schnittstelle C3 gestört
W	35-4	Schnittst. C4	Schnittstelle C4 gestört
W	35-5	Schnittst. C5	Schnittstelle C5 gestört
W	61-0	GC-Offset Hs	Grenzwertfehler durch GC Offset Ho
W	61-1	GC-Offset rn	Grenzwertfehler durch GC Offset rn
W	61-2	GC-Offset CO2	Grenzwertfehler durch GC Offset CO ₂
W	72-5	Modb.Timeout C5	Timeout Modbus C5
W	83-0	MB Funktion C3	Illegale Funktion Modbus C3
W	83-1	MB Datenadr. C3	Illegale Daten-Adresse Modbus C3
W	84-0	MB Funktion C4	Illegale Funktion Modbus C4
W	84-1	MB Datenadr. C4	Illegale Daten-Adresse Modbus C4
W	85-0	MB Funktion C5	Illegale Funktion Modbus C5

.....

E Montageanleitung für Rohrverschraubungen

ERSTMONTAGE

60

* Für Verschraubungen der Größen 2, 3, 4 mm oder 1/16", 1/8", 3/16" müssen ¾ Umdrehungen der Mutter bei der Erstmontage gemacht werden.

